[1]
L. Suku, S.S. Prabhu, G.L.S. Babu, Effect of triaxial geogrid-reinforcement in granular bases under repeated Loading. Geotext. Geomembr. 45 (2017) 377-389.
DOI: 10.1016/j.geotexmem.2017.04.008
Google Scholar
[2]
B.A. MIR, Geosynthetics Applications In Highway Construction In J&K: Sustainable Infrastructure Development. Journal on Structural Engineering: State-of-the-art and State-of-Practice in Structural Engineering. 3 (2014) 1-9.
Google Scholar
[3]
B.A. Mir, S. Ashraf, Evaluation of Load-Settlement Behaviour of Square Model Footings Resting on Geogrid Reinforced Granular Soils. In: Shehata, H., Das, B. (eds) Advanced Research on Shallow Foundations. GeoMEast 2018. Sustainable Civil Infrastructures. Springer, Cham. 9 (2019) 103–126.
DOI: 10.1007/978-3-030-01923-5_9
Google Scholar
[4]
Q.S. Banyhussan, H.A. hassan, A.J. Kadhum, Performance of reinforced subbase materials by geogrid as a base layer under weak subgrade. E3S Web of Conferences (ICGEE 2023), 427 (2023) 03008.
DOI: 10.1051/e3sconf/202342703008
Google Scholar
[5]
S.K. Shukla Geosynthetics and their applications. London: Thomas Telford Publishing; 2002.
Google Scholar
[6]
Q. Chen, S. Hanandeh, M. Abu-Farsakh, L., Mohammad, Performance evaluation of full-scale geosynthetic reinforced flexible pavement. Geosynth. Int. 25 (2018) 26–36.
DOI: 10.1680/jgein.17.00031
Google Scholar
[7]
M. Esmaeili, J.A. Zakeri, M. Babaei, Laboratory and field investigation of the effect of triaxial geogrid-reinforced ballast on railway track lateral resistance. Geotext. Geomembranes. 45 (2017) 23–33.
DOI: 10.1016/j.geotexmem.2016.11.003
Google Scholar
[8]
M.Y. Fattah, N.M. Salim, M.S. Ismaiel, 2021, Influence of Geogrid Reinforcement of Sand in Transfer of Dynamic Loading to Underground Structure. IOP Conf. Ser.: Earth Environ. Sci. 856 012013, IOP Conference Series: Earth and Environmental Science, 856 (2021)
DOI: 10.1088/1755-1315/856/1/012013
Google Scholar
[9]
G.T. Mehrjardi, A. Ghanbari, H. Mehdizadeh, Experimental study on the behaviour of triaxial geogrid-reinforced slopes with respect to aggregate size. Geotext. Geomembranes. 44 (2016) 862–871.
DOI: 10.1016/j.geotexmem.2016.06.006
Google Scholar
[10]
X. Sun, J. Han, R. Corey, Equivalent modulus of triaxial geogrid-stabilized granular base back-calculated using permanent deformation. J. Geotech. Geoenviron. Eng. 143 (2017) 06017012.
DOI: 10.1061/(asce)gt.1943-5606.0001761
Google Scholar
[11]
J.Q. Wang, L.L. Zhang, J.F. Xue, Y. Tang, Load-settlement response of shallow square footings on triaxial geogrid-reinforced sand under cyclic loading. Geotextiles and Geomembranes. 46 (2018) 586–596.
DOI: 10.1016/j.geotexmem.2018.04.009
Google Scholar
[12]
Q. Chen, M. Abu-Farsakh, Mitigating the bridge end bump problem: A case study of a new approach slab system with geosynthetic reinforced soil foundation. Geotext. Geomembr. 44 (2016) 39–50.
DOI: 10.1016/j.geotexmem.2015.07.001
Google Scholar
[13]
C.C. Huang, M.Y. Al-Aghbari, Y.E.A. Mohamedzein, Ultimate bearing capacity of saturated reinforced horizontal ground. Geosynth. Int. 23 (2016) 1–8.
Google Scholar
[14]
M. Mosallanezhad, N. Hataf, S.S. Taghavi, Experimental and large-scale field tests of grid-anchor system performance in increasing the ultimate bearing capacity of granular soils. Can. Geotech. J. 53 (2016) 1047–1058.
DOI: 10.1139/cgj-2015-0590
Google Scholar
[15]
Perkins SW (1999) Geosynthetic reinforcement of flexible pavements: laboratory based pavement test sections. Federal Highway Administration Report No. FHWA/MT-99-001/81838.
Google Scholar
[16]
Q. Chen, Triaxial geogrid-Enhanced Modulus and Stress Distribution in Clay Soil Geotechnics. 4 (2024) 41–53.
DOI: 10.3390/geotechnics4010003
Google Scholar
[17]
Kazi, M., Shukla, S.K., Habibi, D., An improved method to increase the load-bearing capacity of strip footing resting on geotextile-reinforced sand bed. Indian Geotech. J. 45 (2015), 98–109.
DOI: 10.1007/s40098-014-0111-9
Google Scholar
[18]
A. Demir, M. Laman, A. Yildiz, M. Ornek, Large scale field tests on triaxial geogrid-reinforced granular fill underlain by clay soil. Geotext. Geomembr. 38 (2013) 1-15.
DOI: 10.1016/j.geotexmem.2012.05.007
Google Scholar
[19]
R. Baadiga , S. Saride, U. Balunaini , M.R. Madhira, Influence of tensile strength of triaxial geogrid and subgrade modulus on layer coefficients of granular bases. Transportation Geotechnics 29 (2021) 100557.
DOI: 10.1016/j.trgeo.2021.100557
Google Scholar
[20]
R.L. Michalowski, Limit Loads on reinforced foundation soils. J Geotech Geoenviron Eng ASCE. 130 (2004) 381–390.
DOI: 10.1061/(asce)1090-0241(2004)130:4(381)
Google Scholar
[21]
A.J. Lutenegger, M.T. Adams, Bearing Capaicty of Footings on Compacted Sand. J. Geotech. Geoenviron. Eng., 123 (1998) 30–36. Proceedings of the 4th International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, March 9-12, 1998.
Google Scholar
[22]
A.B. Cerato, Scale effect of shallow foundation bearing capacity on granular material. Ph.D. dissertation, University of Massachusetts, Amherst, Mass USA, 2005.
Google Scholar
[23]
E. Badakhshan, A. Noorzad, Load eccentricity effects on behavior of circular footings reinforced with triaxial geogrid sheets. Journal of Rock Mechanics and Geotechnical Engineering, 7 (2015) 691–699.
DOI: 10.1016/j.jrmge.2015.08.006
Google Scholar
[24]
Y. Xu, G. Yan, D.J. Williams, M. Serati, A. Scheuermann, T. Vangsness, Experimental and numerical studies of a strip footing on geosynthetic-reinforced sand. International Journal of Physical Modelling in Geotech, 20 (2019) 1–14
DOI: 10.1680/jphmg.18.00021
Google Scholar
[25]
J.Q. Wang, L.L. Zhang, Y. Tang, S.B. Huang, Influence of reinforcement-arrangements on dynamic response of geogrid-reinforced foundation under repeated loading. Construction and Building Materials. 274 (2021) 122093
DOI: 10.1016/j.conbuildmat.2020.122093
Google Scholar