Electrochemical Machining of Micro Hole under Magnetic Field Assistance

Article Preview

Abstract:

This study investigated the characteristics of a microtool used in electrochemical microdrilling under conditions with and without magnetic field assistance. The experimental results indicated that charged ions and the direction of bubble movement were affected by the Lorentz force under the condition with magnetic field assistance, forming a vortex to promote electrolyte renewal. Reaction products and heat generated by the machining process were effectively discharged. The zone affected by stray current corrosion and microhole expansion were also reduced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-46

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sen, M., & Shan, H. S. (2006). Analysis of roundness error and surface roughness in the electro jet drilling process. Materials and manufacturing processes, 21(1), 1-9.

DOI: 10.1081/amp-200060398

Google Scholar

[2] Coteaţă, M., Schulze, H. P., & Slătineanu, L. (2011). Drilling of difficult-to-cut steel by electrochemical discharge machining. Materials and Manufacturing Processes, 26(12), 1466-1472.

DOI: 10.1080/10426914.2011.557286

Google Scholar

[3] Thanigaivelan, R., & Arunachalam, R. M. (2010). Experimental study on the influence of tool electrode tip shape on electrochemical micromachining of 304 stainless steel. Materials and manufacturing processes, 25(10), 1181-1185.

DOI: 10.1080/10426914.2010.508806

Google Scholar

[4] Malapati, M., & Bhattacharyya, B. (2011). Investigation into electrochemical micromachining process during micro-channel generation. Materials and Manufacturing Processes, 26(8), 1019-1027.

DOI: 10.1080/10426914.2010.525575

Google Scholar

[5] Rajurkar, K. P., Levy, G., Malshe, A., Sundaram, M. M., McGeough, J., Hu, X., ... & DeSilva, A. (2006). Micro and nano machining by electro-physical and chemical processes. CIRP annals, 55(2), 643-666.

DOI: 10.1016/j.cirp.2006.10.002

Google Scholar

[6] Öpöz, T. T., Ekmekci, B., & Erden, A. (2009). An experimental study on the geometry of microholes in microelectric discharge machining. Materials and Manufacturing Processes, 24(12), 1236-1241.

DOI: 10.1080/10426910903129422

Google Scholar

[7] Ali, M. Y., Hamad, M. H., & Karim, A. I. (2009). Form characterization of microhole produced by microelectrical discharge drilling. Materials and Manufacturing Processes, 24(6), 683-687.

DOI: 10.1080/10426910902769343

Google Scholar

[8] Bhattacharyya, B., Malapati, M., & Munda, J. (2005). Experimental study on electrochemical micromachining. Journal of Materials Processing Technology, 169(3), 485-492.

DOI: 10.1016/j.jmatprotec.2005.04.074

Google Scholar

[9] Tsui H.P., Hung J.C., You, J.C., & Yan, B.H.(2008). Improvement of electrochemical micro-drilling accuracy using helical tool. Materials and Manufacturing Processes, 23(5),499-505.

DOI: 10.1080/10426910802104237

Google Scholar

[10] Tsui, H. P., Hung, J. C., Wu, K. L., You, J. C., & Yan, B. H. (2011). Fabrication of a microtool in electrophoretic deposition for electrochemical microdrilling and in situ micropolishing. Materials and Manufacturing Processes, 26(5), 740-745.

DOI: 10.1080/10426910903536816

Google Scholar

[11] Kurita, T., Chikamori, K., Kubota, S., & Hattori, M. (2006). A study of three-dimensional shape machining with an ECμM system. International Journal of Machine Tools and Manufacture, 46(12-13), 1311-1318.

DOI: 10.1016/j.ijmachtools.2005.10.013

Google Scholar

[12] Chikamori, K. (1998). Possibilities of electrochemical micromachining. International Journal of the Japan Society for Precision Engineering, 32(1), 37-38.

Google Scholar

[13] Hewidy, M. S., Ebeid, S. J., Rajurkar, K. P., & El-Safti, M. F. (2001). Electrochemical machining under orbital motion conditions. Journal of Materials Processing Technology, 109(3), 339-346.

DOI: 10.1016/s0924-0136(00)00827-x

Google Scholar

[14] Fang, J., & Jin, Z. (2002). ECM polishing research of assistant magnetic field, Chin. Surf. Eng, 15(3), 24-26.

Google Scholar

[15] Yan, B. H., Chang, G. W., Cheng, T. J., & Hsu, R. T. (2003). Electrolytic magnetic abrasive finishing. International Journal of Machine Tools and Manufacture, 43(13), 1355-1366.

DOI: 10.1016/s0890-6955(03)00151-2

Google Scholar

[16] Cheng, C. P., Wu, K. L., Mai, C. C., Hsu, Y. S., & Yan, B. H. (2010). Magnetic field-assisted electrochemical discharge machining. Journal of Micromechanics and Microengineering, 20(7), 075019.

DOI: 10.1088/0960-1317/20/7/075019

Google Scholar

[17] Zhang, C., Zheng, P., Liang, R., Yun, K., Jiang, X., & Yan, Z. (2020). Effects of a magnetic field on the machining accuracy for the electrochemical drilling of micro holes. International Journal of Electrochemical Science, 15(2), 1148-1159.

DOI: 10.20964/2020.02.10

Google Scholar