Taguchi Optimization of MRR in Magnesium AZ91 Using EDM with Graphite Electrode

Article Preview

Abstract:

This study investigates the performance of Electrical Discharge Machining (EDM) on magnesium alloy grade AZ91 using a graphite electrode, with a focus on optimizing the material removal rate (MRR) and electrode wear ratio (EWR). The machining parameters such as current, on-time, and duty factor were systematically varied and assessed using the Taguchi method with an L9 orthogonal array design. The results identified current and on-time as significant factors influencing both MRR and EWR. Higher current values led to increased MRR, enhancing material removal efficiency, but also resulted in greater electrode degradation. Similarly, increased on-time durations significantly impacted MRR and EWR, indicating that prolonged exposure to discharge conditions can improve material removal while contributing to higher electrode wear. Conversely, the duty factor did not show a statistically significant impact on either MRR or EWR within the experimental conditions of this study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-16

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.L. Mason: Taguchi methods: a hands-on approach, J. Qual. Technol. Vol. 26 (1994), pp.77-78.

Google Scholar

[2] T. Prakash, R. Ranjith, M. Sanjay and V. Sudharshan: Electric discharge machining of AZ91 magnesium hybrid composites under different dielectric mediums, Adv. Mater. Sci. Eng. Vol. 2022 (2022), pp.1-15.

Google Scholar

[3] V. Reddy, P. Vikram, V. Madar, K. Adepu and Ch. Sridhar Reddy: Multi-objective optimization of electrical discharge machining of PH17-4 stainless steel with surfactant-mixed and graphite powder–mixed dielectric using taguchi-data envelopment analysis–based ranking method, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. Vol. 229 (2014), pp.487-494.

DOI: 10.1177/0954405414530904

Google Scholar

[4] J. Chen, G. Lixu, X. Hanlin and Z. Wansheng: Study on blasting erosion arc machining of Ti–6Al–4V alloy, Int. J. Adv. Manuf. Technol. Vol. 85 (2015), pp.2819-2829.

DOI: 10.1007/s00170-015-8126-7

Google Scholar

[5] Y.-F. Chen, L. Yufeng, S.-L. Chen and H. Li-Chang: Optimization of electro discharge machining parameters on ZrO2 ceramic using the Taguchi method, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. Vol. 224 (2009), pp.195-205.

Google Scholar

[6] S. Habib: Parameter optimization of electrical discharge machining process by using taguchi approach, J. Eng. Technol. Res. Vol. 6 (2014), pp.27-42.

DOI: 10.5897/jetr2014.0356

Google Scholar

[7] P.N. Huu, B.T. Long, T.D. Quy, P.V. Dong, N.X. Chung, N.V. Thien, N. Duc Luan et al.: Multi-objective optimization of process parameter in EDM using low-frequency vibration of workpiece assigned for SKD61, Sadhana Vol. 44 (2019), p.10.

DOI: 10.1007/s12046-019-1185-y

Google Scholar

[8] G.S. Prihandana, M. Muslim, M. Hamdi and M. Kimiyuki: Effect of powder mixed dielectric fluid on surface quality and material removal rate in micro-EDM processes, Trans. Mater. Res. Soc. Japan Vol. 34 (2009), pp.329-332.

DOI: 10.14723/tmrsj.34.329

Google Scholar

[9] G.S. Prihandana, M. Muslim, M. Hamdi and M. Kimiyuki: Effect of low-frequency vibration on workpiece in EDM processes, J. Mech. Sci. Technol. Vol. 25 (2011), pp.1231-1234.

DOI: 10.1007/s12206-011-0307-1

Google Scholar

[10] P. Shrivastava and K.D. Avanish: Electrical discharge machining–based hybrid machining processes: a review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. Vol. 228 (2013), pp.799-825.

Google Scholar

[11] D. Singh: Optimization of electric discharge machining of al/al2o3 metal matrix composites using mopso, Int. J. Eng. Res. Mech. Civ. Eng. Vol. 9 (2022), pp.39-47.

DOI: 10.36647/ijermce/09.05.a007

Google Scholar

[12] S. Srivastava, V. Mohit, T.G. Mamatha and K. Vikas: An insight on powder mixed electric discharge machining: a state of the art review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. Vol. 237 (2022), pp.657-690.

Google Scholar

[13] Y.P. Zeng, C.L. Lin, M.D. Hong, C.L. Yan and J. Hung: Multi-performance optimization in electrical discharge machining of Al2O3 ceramics using Taguchi base AHP weighted TOPSIS method, Processes Vol. 9 (2021), p.1647.

DOI: 10.3390/pr9091647

Google Scholar

[14] M. Akgun: Performance analysis of electrode materials in electro discharge machining of monel K-500, Surf. Topogr. Metrol. Prop. Vol. 10 (2022), p.035026.

DOI: 10.1088/2051-672x/ac8d19

Google Scholar

[15] P. Sivaprakasam, P. Hariharan and S. Gowri: Modeling and analysis of micro-WEDM process of titanium alloy (Ti–6Al–4V) using response surface approach, Eng. Sci. Technol. Int. J. Vol. 17 (2014), pp.227-235.

DOI: 10.1016/j.jestch.2014.06.004

Google Scholar

[16] K. Ishfaq, A. Mohammed, A. Saqib, I.P. Catalin and S. Mustafa: A comprehensive analysis of the effect of graphene-based dielectric for sustainable electric discharge machining of Ti-6Al-4V, Mater. Vol. 14 (2020), p.23.

DOI: 10.3390/ma14010023

Google Scholar

[17] R. Khanna, K. Anish, P.G. Mohinder, P.S. Ajit and S. Neeraj: Multiple performance characteristics optimization for Al7075 on electric discharge drilling by Taguchi Grey relational theory, J. Ind. Eng. Int. Vol. 11 (2015), pp.459-472.

DOI: 10.1007/s40092-015-0112-z

Google Scholar

[18] W. Ming, Z. Guojun, L. He, G. Jianwen, H. Yu and C. Zhi: A hybrid process model for EDM based on finite-element method and gaussian process regression, Int. J. Adv. Manuf. Technol. Vol. 74 (2014), pp.1197-1211.

DOI: 10.1007/s00170-014-5989-y

Google Scholar

[19] K. Gupta: Intelligent machining of shape memory alloys, Adv. Sci. Technol. Res. J. Vol. 15 (2021), pp.43-53.

Google Scholar