[1]
Doumanidis, C.C., Hardt, D.E., Simultaneous in-process control of heat-affected zone and cooling rate during arc welding, Welding J., 69(5) 1990, pp.186-196.
Google Scholar
[2]
Masumoto, I., Kutsuna, M., Abraham, M., Metal transfer and spatter loss in double gas shielded metal arc welding, IIW Doc XII-1121-89.
Google Scholar
[3]
Shirali, A.A., Mills, K.C., The effect of welding parameters on penetration in GTA welds, Welding J., 72(7) 1993, pp.347-353.
Google Scholar
[4]
Choo, R.T.C., Szekely, J., The possible role of turbulence in GTA weld pool behaviour, Welding J., 73(2) 1994, pp.25-31.
Google Scholar
[5]
Heino, S., Knutson-Wedel, E., Karlsson, B., Precipitation behaviour in heat-affected zone of welded superaustenitic stainless steel, Mat. Sc. Tech. , 15(1) 1999, pp.101-108.
DOI: 10.1179/026708399773003376
Google Scholar
[6]
Franco, C., Barbosa, R., Martinelli, Buschinelli, A., Study of the influence of welding parameters on the stress corrosion resistance of AISI 304 steel, Materials and Corrosion, 49 (1998), pp.1-18.
DOI: 10.1002/(sici)1521-4176(199807)49:7<496::aid-maco496>3.0.co;2-2
Google Scholar
[7]
Torres, F.J., Panyayong, W., Rogers, W., Velasquez-Plata, D., Oshida, Y., Moore, B.K., Corrosion behaviour of sensitized duplex stainless steel, Bio-Medical Materials and Engineering, 8 (1998), p.2536.
Google Scholar
[8]
Ion, J.C., Easterling, K.E., A second report on diagrams of microstructure and hardness for heataffected zones in welds, IIW Doc IX-1326-84. W M H A Z BM
Google Scholar