[1]
Ewins, D. J. and Sainsbury, M. G: Mobility Measurements for the Vibration Analysis of Connected Structures, The Shock and Vibration Bulletin, Vol. 42(1), 105-122, (1972).
Google Scholar
[2]
Ewins, D. J. and Gleeson, P. T: Experimental Determination of Multi directional Mobility Data for Beams, The Shock and Vibration Bulletin, Vol. 45(5), 153-173, (1975).
Google Scholar
[3]
Ewins, D. J: On Predicting Point Mobility Plots from Measurement of other Mobility Parameters, Journal of Sound and Vibration, Vol. 70, 69-75, (1980).
DOI: 10.1016/0022-460x(80)90554-4
Google Scholar
[4]
Cheng, L. and Qu, Y. C: Rotational Compliance Measurements of a Flexible Plane Structure Using an Attached Beam-like Tip, Part 1: Analysis and Numerical Simulation, Transaction of the ASME, Journal of Vibration and Acoustics, Vol. 119, 596-602, (1997).
DOI: 10.1115/1.2889767
Google Scholar
[5]
Qu, Y. C., Cheng, L. and Rancourt, D: Rotational Compliance Measurements of a Flexible Plane Structure Using an Attached Beam-like Tip, Part 2: Experimental Study, Transaction of the ASME, Journal of Vibration and Acoustics, Vol. 119, 603-608, (1997).
DOI: 10.1115/1.2889768
Google Scholar
[6]
Silva, J. M. M., Maia, N. M. M. and Ribeiro, A. M. R: An Indirect Method of Estimation of Frequency Response Functions Involving Rotational d. o. f. s, Proceedings of ISMA 25, Vol. 2, 1013-1019, (2000).
Google Scholar
[7]
Bokelberg, E. H., Sommer III H. J. and Trethewey, M. W.: A Six-Degree-of-Freedom Laser Vibrometer, Part I: Theoretical Development, Journal of Sound and Vibration, Vol. 178(5), 643- 654, (1994).
DOI: 10.1006/jsvi.1994.1512
Google Scholar
[8]
Bokelberg, E. H., Sommer III H. J. and Trethewey, M. W.: A Six-Degree-of-Freedom Laser Vibrometer, Part II: Experimental Validation, Journal of Sound and Vibration, Vol. 178(5), 655- 667, (1994).
DOI: 10.1006/jsvi.1994.1513
Google Scholar
[9]
Duarte, M. L. M., and Ewins J. D.: Rotational Degrees of Freedom for Structural Coupling Analysis via Finite-Difference Technique with Residual Compensation, Mechanical Systems and Signal Processing, Vol. 14(2), 205-227, (2000).
DOI: 10.1006/mssp.1999.1241
Google Scholar
[10]
Smith, E. J.: Measurement of the Total Structural Mobility Matrix, Shock and Vibration Bulletin, Vol. 40(7), 51-84, (1969).
Google Scholar
[11]
Sanderson, M. A. and Fredo, C. R.: Direct Measurement of Moment Mobility, Part I: A Theoretical Study, Journal of Sound and Vibration, Vol. 179(4), 669-684, (1995).
DOI: 10.1006/jsvi.1995.0043
Google Scholar
[12]
Sanderson, M. A. : Direct Measurement of Moment Mobility, Part II: An Experimental Study, Journal of Sound and Vibration, Vol. 179(4), 685-696, (1995).
DOI: 10.1006/jsvi.1995.0044
Google Scholar
[13]
Petersson, B. : On the use of Giant Magnetostrictive Devices for Moement Excitation, Journal of Sound and Vibration, Vol. 116(1), 191-194, (1987).
DOI: 10.1016/s0022-460x(87)81332-9
Google Scholar
[14]
Su, J. and Gibbs B. M. : Measurement of Point Moment Mobility in the Presence of Non-Zero Cross Mobility, Applied Acoustics, Vol. 54(1), 9-26, (1998).
DOI: 10.1016/s0003-682x(97)00068-6
Google Scholar
[15]
Dong, J. and McConnell K. G : Extracting Multi-Directional FRF Matrices with "Instrument Cluster", IMAC Proceedings 2002, 751-764.
Google Scholar
[16]
Trethewey W. M. and Sommer III H. J : Measurement of Rotational DOF Frequency Response Functions with Pure Moment Excitation, Int. Conf. Structural Dynamics Modelling, Test Analysis, Correlation and Validation, Madeira, Portugal 3-5 June 2002, 81-88.
Google Scholar
[17]
Kyprianou, A., Mottershead, J. E. and Ouyang, H.: Assignment of Natural Frequencies by an Added Mass and One or More Springs, MSSP to appear.
DOI: 10.1016/s0888-3270(02)00220-0
Google Scholar
[18]
Bendat, J. S. and Piersol, A. G. : Random Data Analysis and Measurement Procedures, John Wiley and Sons Inc, (2000).
Google Scholar
[19]
Tikhonov, A. N. and Arsenin, Y. V. : Solutions of Ill-Posed Problems, John Wiley and Sons Inc, 1977. Fig. 2. An overlay of hm yy and estimated hyy This article was processed using the LATEX macro package with TTP styleFig. 3. An overlay of hm zz and estimated hzz Fig. 4. An overlay of hm yz and estimated hyzFig. 5. An overlay of hm yθx and estimated hyθx Fig. 6. An overlay of hm θxz and estimated hθxzFig. 7. The estimated rotational frequency response function hθxθx.
DOI: 10.7554/elife.46754.014
Google Scholar