Damage Detection in Large-Scale Laboratory Bridge Models

Abstract:

Article Preview

Info:

Periodical:

Key Engineering Materials (Volumes 245-246)

Edited by:

J.M. Dulieu-Barton, M.J. Brennan, K.M. Holford and K. Worden

Pages:

35-42

Citation:

J.S. Owen and N. Haritos, "Damage Detection in Large-Scale Laboratory Bridge Models ", Key Engineering Materials, Vols. 245-246, pp. 35-42, 2003

Online since:

July 2003

Authors:

Export:

Price:

$38.00

[1] N Haritos & J S Owen, The Use of Vibration Data for Damage Detection in Bridges: A Comparison of System Identification and Pattern Recognition Approaches., International Journal of Structural Health Monitoring (under review).

DOI: https://doi.org/10.1177/1475921704042698

[2] I Trendafilova, Pattern recognition methods for damage diagnosis in structures from vibration measurements., Key Engineering Materials Vols 204-205, (2001) pp.85-94.

DOI: https://doi.org/10.4028/www.scientific.net/kem.204-205.85

[3] C Zang & M Imregun, Structural Damage detection using artificial neural networks and measured FRF data reduced via principal component projection, Journal of Sound and Vibration, Vol 242(5), (2001), pp.813-0.

DOI: https://doi.org/10.1006/jsvi.2000.3390

1.

2.

3.

4.

5.

6.

7.

8.

9 1 0 5 10 15 20 25 Damage Level ANN Output Output 1 Output 2 0.

1.

2.

3.

4.

5.

6.

7.

8.

9 1 0 5 10 15 20 25 Damage Level ANN Output Output 1 Output 2 x 1 x 2 x 10 h 1 h 2 h 10 o 2 o 1 o 1 o 1.