Super-Long Life Fatigue Behavior of Structural Aluminum Alloys

Abstract:

Article Preview

The objective of this study is to determine very long life fatigue and near threshold fatigue crack growth behaviors of 7075/T6 and 6061/T6 Al-alloys using piezoelectric accelerated fatigue at 19.5KHz. The experimental results show the fatigue failure can occur beyond 107, even 109 cycles, and endurance limits could not be obtained in the Al-alloys until 109 cycles. Fatigue voids are noticed on fatigue fracture in both alloys. By using scanning electron microscopy (SEM), the crack initiation and propagation behaviors have been examined. Fatigue crack growth rates of small cracks in the Al-alloys are found to be greater than those of large cracks at the same stress intensity factor range.

Info:

Periodical:

Key Engineering Materials (Volumes 261-263)

Edited by:

Kikuo Kishimoto, Masanori Kikuchi, Tetsuo Shoji and Masumi Saka

Pages:

1287-1294

Citation:

Q. Y. Wang et al., "Super-Long Life Fatigue Behavior of Structural Aluminum Alloys", Key Engineering Materials, Vols. 261-263, pp. 1287-1294, 2004

Online since:

April 2004

Export:

Price:

$38.00

[1] P. Heuler and O. Birk: Fatigue Fract. Engng. Mater. Struct. Vol. 25 (2002), p.1135.

[2] Q.Y. Wang, J.Y. Berard, A. Dubarre, S. Rathery and C. Bathias: Fatigue Fract. Engng. Mater. Struct. Vol. 22 (1999), p.667.

DOI: https://doi.org/10.1046/j.1460-2695.1999.00185.x

[3] Q.Y. Wang, J.Y. Berard, S. Rathery and C. Bathias: Fatigue Fract. Engng. Mater. Struct. Vol. 22 (1999), p.673.

[4] Q.Y. Wang, C. Bathias, N. Kawagoishi and Q. Chen: Int. J. of Fatigue Vol. 24 (2002), p.1269.

[5] N. Yan, N. Kawagoishi, Q. Chen and Q.Y. Wang: Key Engng. Mater. Vol. 243-244 (2003), p.321.

[6] K. Shiozawa and L. Lu: Fatigue Fract. Engng. Mater. Struct. Vol. 25 (2002), p.813.

[7] Y. Murakami, M. Takada and T. Toriyama: Int. J. of Fatigue Vol. 20 (1998), p.661.

[8] C. Bathias: Fatigue Fract. Engng. Mater. Struct. Vol. 22 (1999), p.559.

[9] H. Mayer: Int. Mater. Reviews Vol. 44 (1999), p.1.

[10] T. Pardoen and J.W. Hutchinson: Acta Mater. Vol. 51 (2003), p.133.

[11] H. Agarwal, A. M. Gokhale, S. Graham and M.F. Horatemeter: Mater. Sci. Engng. Vol. A341 (2003), p.35.

[12] V. Tvergaard and J.W. Hutchinson: Int. J. Solids Struct. Vol. 39 (2002), p.3581.

[13] J.P. Bandstra and D.A. Koss: Mater. Sci. Engng. Vol. A319-321 (2001), p.490.

[14] R. Sunder, W.J. Porter and N.E. Ashbaugh: Fatigue Fract. Engng. Mater. Struct. Vol. 25 (2002), p.1015.

[15] Q.Y. Wang, R.M. Pidaparti and M.J. Palakal: AIAA J. Vol. 39 (2001), p.325.

[16] S.A. Barter, P.K. Sharp, G. Holden and G. Clark: Fatigue Fract. Engng. Mater. Struct. Vol. 25 (2002), p.111.

[17] Q.Y. Wang: Ph. D Thesis, Ecole Centrale Paris, France (1998).

Fetching data from Crossref.
This may take some time to load.