[1]
J. C. Chang, F. F. Lange, and D. S. Pearson, Viscosity and yield stress of alumina slurries containing large concentration of electrolyte, J. Am. Ceram. Soc., 77, 19-26 (1994).
DOI: 10.1111/j.1151-2916.1994.tb06952.x
Google Scholar
[2]
B. Balzer, M. K.M. Hruschka, and L. J. Gauckler, In situ rheological investigation of the coagulation in aqueous alumina suspensions, J. Am. Ceram. Soc. 84, 1733-39 (2001).
DOI: 10.1111/j.1151-2916.2001.tb00907.x
Google Scholar
[3]
W. H. Shih, W. Y. Shih, S. I. Kim, J. Liu, and I. A. Aksay, Scaling behavior of the elastic properties of colloidal gels, Phys. Rev. A: Gen. Phys. 42, 4772-4779 (1990).
DOI: 10.1103/physreva.42.4772
Google Scholar
[4]
R. C. Sonntag, and W. B. Russel, Elastic properties of flocculated networks, J. Colloid Interface Sci. 116, 485-489 (1987).
DOI: 10.1016/0021-9797(87)90144-5
Google Scholar
[5]
J. A. Yanez, T. Shikata, F. F. Lange, and D. S Pearson, Shear modulus and yield stress of attractive alumina particle network in aqueous slurries, J. Am. Ceram. Soc. 79, 2917-2924 (1996).
DOI: 10.1111/j.1151-2916.1996.tb08726.x
Google Scholar
[6]
V. Trappe, V. Prasad, Luca Cipelletti, P. N. Segre, and D. A Weitz, Jamming phase diagram for attractive particles, Nature 411, 772-775 (2001).
DOI: 10.1038/35081021
Google Scholar
[7]
W. M. Sigmund, N. S. Bell, and L. Bergström, Novel powder processing methods for advanced ceramics, J. Am. Ceram. Soc. 83, 1557-74 (2000).
Google Scholar
[8]
L. Bergström, and E. Sjöström, Temperature induced gelation of concentrated ceramic suspensions: rheological properties, J. Eur. Ceram. Soc. 5, 1-7 (1999).
DOI: 10.1016/s0955-2219(99)00021-7
Google Scholar
[9]
L. Bergström, Method for forming ceramic powders by temperature induced flocculation. US Patent 5, 540, 532, 23, August (1994).
Google Scholar
[10]
W. M. Sigmund, J. Yanez, and F. Aldinger, Formgebungsmethode für Keramiken und Metalle in Wässrigen Systemen mittels Temperaturänderung. German patent 197, 51, 696. 3, (1998).
Google Scholar
[11]
N. S. Bell, L. Wang, W. M. Sigmund, and F. Aldinger, Temperature induced forming: application of bridging flocculation to near-net shape production of ceramic parts, Z. Metallkd. 90, 388-92 (1999).
Google Scholar
[12]
Y. Yang, and W. M. Sigmund, Rheological properties, gelation diagram and direct casting process of the temperature induced forming (TIF) alumina suspensions, J. Mater. Synthesis Process. 9, 103-109 (2001).
Google Scholar
[13]
Y. Yang, and W. M. Sigmund, Effect of volume fraction of particles on the viscoelastic properties of the temperature induced forming (TIF) alumina suspensions, J. Am. Ceram. Soc., 84, 2138-2140 (2001).
DOI: 10.1111/j.1151-2916.2001.tb00975.x
Google Scholar
[14]
Y. Yang, and W. M. Sigmund, Estimation of the volume fraction gelation threshold for the temperature induced forming (TIF) alumina aqueous suspensions using rheological measurement, J. Ceram. Process. Res., 2, 120-124 (2001).
Google Scholar
[15]
Y. Yang, and W. M. Sigmund, Expanded percolation theory model for the temperature induced forming ceramic slurries, J. Europ. Ceram. Soc., 22, 1791-1799 (2002).
DOI: 10.1016/s0955-2219(01)00512-x
Google Scholar
[16]
Y. Yang, and W. M. Sigmund, A new approach to prepare highly loaded aqueous alumina suspensions with temperature sensitive rheological properties, J. Europ. Ceram. Soc., 23, 253-261 (2003).
DOI: 10.1016/s0955-2219(02)00179-6
Google Scholar