The Strength of Wet Ceramic Green Bodies during Gelation for the Temperature Induced Forming (TIF) Suspensions

Abstract:

Article Preview

Info:

Periodical:

Key Engineering Materials (Volumes 264-268)

Main Theme:

Edited by:

Hasan Mandal and Lütfi Öveçoglu

Pages:

155-160

Citation:

Y. Yang and W. M. Sigmund, "The Strength of Wet Ceramic Green Bodies during Gelation for the Temperature Induced Forming (TIF) Suspensions ", Key Engineering Materials, Vols. 264-268, pp. 155-160, 2004

Online since:

May 2004

Export:

Price:

$38.00

[1] J. C. Chang, F. F. Lange, and D. S. Pearson, Viscosity and yield stress of alumina slurries containing large concentration of electrolyte, J. Am. Ceram. Soc., 77, 19-26 (1994).

[2] B. Balzer, M. K.M. Hruschka, and L. J. Gauckler, In situ rheological investigation of the coagulation in aqueous alumina suspensions, J. Am. Ceram. Soc. 84, 1733-39 (2001).

DOI: https://doi.org/10.1111/j.1151-2916.2001.tb00907.x

[3] W. H. Shih, W. Y. Shih, S. I. Kim, J. Liu, and I. A. Aksay, Scaling behavior of the elastic properties of colloidal gels, Phys. Rev. A: Gen. Phys. 42, 4772-4779 (1990).

DOI: https://doi.org/10.1103/physreva.42.4772

[4] R. C. Sonntag, and W. B. Russel, Elastic properties of flocculated networks, J. Colloid Interface Sci. 116, 485-489 (1987).

DOI: https://doi.org/10.1016/0021-9797(87)90144-5

[5] J. A. Yanez, T. Shikata, F. F. Lange, and D. S Pearson, Shear modulus and yield stress of attractive alumina particle network in aqueous slurries, J. Am. Ceram. Soc. 79, 2917-2924 (1996).

DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08726.x

[6] V. Trappe, V. Prasad, Luca Cipelletti, P. N. Segre, and D. A Weitz, Jamming phase diagram for attractive particles, Nature 411, 772-775 (2001).

DOI: https://doi.org/10.1038/35081021

[7] W. M. Sigmund, N. S. Bell, and L. Bergström, Novel powder processing methods for advanced ceramics, J. Am. Ceram. Soc. 83, 1557-74 (2000).

[8] L. Bergström, and E. Sjöström, Temperature induced gelation of concentrated ceramic suspensions: rheological properties, J. Eur. Ceram. Soc. 5, 1-7 (1999).

[9] L. Bergström, Method for forming ceramic powders by temperature induced flocculation. US Patent 5, 540, 532, 23, August (1994).

[10] W. M. Sigmund, J. Yanez, and F. Aldinger, Formgebungsmethode für Keramiken und Metalle in Wässrigen Systemen mittels Temperaturänderung. German patent 197, 51, 696. 3, (1998).

[11] N. S. Bell, L. Wang, W. M. Sigmund, and F. Aldinger, Temperature induced forming: application of bridging flocculation to near-net shape production of ceramic parts, Z. Metallkd. 90, 388-92 (1999).

[12] Y. Yang, and W. M. Sigmund, Rheological properties, gelation diagram and direct casting process of the temperature induced forming (TIF) alumina suspensions, J. Mater. Synthesis Process. 9, 103-109 (2001).

[13] Y. Yang, and W. M. Sigmund, Effect of volume fraction of particles on the viscoelastic properties of the temperature induced forming (TIF) alumina suspensions, J. Am. Ceram. Soc., 84, 2138-2140 (2001).

DOI: https://doi.org/10.1111/j.1151-2916.2001.tb00975.x

[14] Y. Yang, and W. M. Sigmund, Estimation of the volume fraction gelation threshold for the temperature induced forming (TIF) alumina aqueous suspensions using rheological measurement, J. Ceram. Process. Res., 2, 120-124 (2001).

DOI: https://doi.org/10.1111/j.1151-2916.2001.tb00975.x

[15] Y. Yang, and W. M. Sigmund, Expanded percolation theory model for the temperature induced forming ceramic slurries, J. Europ. Ceram. Soc., 22, 1791-1799 (2002).

DOI: https://doi.org/10.1016/s0955-2219(01)00512-x

[16] Y. Yang, and W. M. Sigmund, A new approach to prepare highly loaded aqueous alumina suspensions with temperature sensitive rheological properties, J. Europ. Ceram. Soc., 23, 253-261 (2003).

DOI: https://doi.org/10.1016/s0955-2219(02)00179-6