Superplastic Forming of Silicon Nitride at Low Temperature

Article Preview

Abstract:

Si3N4 ceramic bodies were prepared by liquid phase sintering (LPS) with the amorphous nano-sized Si3N4 powders. Nano-sized Al2O3 and Y2O3 powders were introduced as additives. XRD analysis showed that the sintered body consists of β-Si3N4 and Si2N2O which confirms that phase change temperature of β-Si3N4 is lower than traditional Si3N4. SEM examination showed that the grain size of sintered body is smaller than 300 nm. Superplastic forming can be undertaken at the low temperature of 1550°C in a nitrogen atmosphere when the forming velocity is less than 0.5 mm/min. The formed parts rupture when the forming velocity is 1 mm/min or the forming temperature is 1500°C. Only a few defects are observed in the blank before forming, but many cavity groups are present in the formed workpiece.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

1249-1252

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.W. Chen and L.A. Xue: J. Am. Ceram. Soc. Vol. 73 (1990), p.2585.

Google Scholar

[2] F. Wakai, Y. Kodama, S. Sakaguchi, N. Murayama, K. Izaki and K. Niihara: Nature Vol. 344 (1990), p.421.

DOI: 10.1038/344421a0

Google Scholar

[3] X. Wu and I.W. Chen: J. Am. Ceram. Soc. Vol. 75 (1992), p.2733.

Google Scholar

[4] I.W. Chen and S.L. Huang: J. Am. Ceram. Soc. Vol. 75 (1992), p.1073.

Google Scholar

[5] S.L. Hwang and I.W. Chen: J. Am. Ceram. Soc. Vol. 77 (1994), p.2575.

Google Scholar

[6] A. Rosenanz and I.W. Chen: J. Am. Ceram. Soc. Vol. 80 (1997), p.1341.

Google Scholar

[7] T. Rouxel, F. Rossignol, J.L. Besson and P. Goursat: J. Mater. Res. Vol. 12 (1997), p.480.

Google Scholar

[8] M. Mitomo, H. Hirotsuru, H. Suematsu and T. Nishimura: J. Am. Ceram. Soc. Vol. 78 (1995), p.211.

Google Scholar

[9] C.M. Wang, M. Mitomo, T. Nishimura and Y. Bando: J. Am. Ceram. Soc. Vol. 80 (1997), p.1213.

Google Scholar

[10] G.D. Zhan, M. Mitomo, T. Nishimura, R. J. Xie, T. Sakuma and Y. Ikuhara: J. Am. Ceram. Soc. Vol. 83 (2000), p.841.

Google Scholar

[11] G.D. Zhan, M. Mitomo and R.J. Xie: Acta. Mater. Vol. 48 (2000), p.2373.

Google Scholar

[12] R.M. Xie, M. Mitomo and G.D. Zhan: Acta. Mater. Vol. 48 (2000), pp. (2049).

Google Scholar

[13] R.J. Xie, M. Mitomo, G.D. Zhan and H. Emoto: J. Am. Ceram. Soc. Vol. 83 (2000), p.2529.

Google Scholar

[14] T. Rouxel and F. Wakai: J. Am. Ceram. Soc. Vol. 75 (1992), p.2363.

Google Scholar

[15] L.A. Xue and I.W. Chen: J. Am. Ceram. Soc. Vol. 75 (1992), p.1085.

Google Scholar

[16] R.J. Xie, M. Mitomo and G.D. Zhan: J. Europ. Ceram. Soc. Vol. 22 (2002), p.963.

Google Scholar

[17] F. Wakai, N. Kondo and Y. Shinoda: Solid State & Material Science Vol. 4 (1999), p.461.

Google Scholar

[18] G. F. Wang, K.F. Zhang and W. B. Han: Key Eng. Mater. Vol. 224-226 (2002), p.721.

Google Scholar