Failure Analysis on Rubber-Modified Epoxy Resin under Various Loading Speed Conditions

Article Preview

Abstract:

A rubber-modified epoxy resin is widely used as adhesive and matrix materials for fiber composite material. The structural reliability of composite material depends on the fracture toughness of the matrix resin. In this study, the fracture toughness and the damage zone around a crack tip in rubber-modified epoxy resin were investigated. The volume fractures of rubber (CTBN1300×8) in the rubber-modified epoxy resin were 0%, 5% and 15% under several loading speeds. The fracture toughness(KIC) and the fracture energy(GIC) were measured by using 3-point bending specimens. The 4-point bending specimens were also used to observe damage zones at the vicinity of a crack tip in modified resins. The results show that the values of the fracture toughness and the sizes of damage zones at 5% and 15% rubber content decrease with increase in loading speed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 297-300)

Pages:

1907-1912

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.F. Yee and R.A. Pearson: J. Mater. Sci. Vol. 21 (1986), p.2462.

Google Scholar

[2] R.A. Pearson and A.F. Yee: J. Mater. Sci. Vol. 21 (1986), p.2475.

Google Scholar

[3] T.K. Chen and Y.H. Jan: J. Mater. Sci. Vol. 27 (1992), p.111.

Google Scholar

[4] H.R. Daghyani, Y.W. Mai and J. wu: J. Mater. Sci. Lett. Vol. 13 (1994), p.1330.

Google Scholar

[5] A.J. Kinloch, S.J. Shaw, D.A. Tod and D.L. Hunston: Ploym. Vol. 24 (1983), p.1341.

Google Scholar

[6] W.D. Bascom: J. Mater. Sci. Vol. 16 (1981), p.2657.

Google Scholar

[7] L.T. Manzione and J.K. Gillham: J. Appl. Polym. Sci. Vol. 26 (1981), p.889.

Google Scholar

[8] D.B. Lee, T. Ikeda, M. Todo, N. Miyazaki and K. Takahashi: Trans. Japan Soc. Mech. Eng. Vol. 65 (1998), p.25.

Google Scholar

[9] R.A. Pearson and A.F. Yee: J. Mater. Sci. Vol. 21 (1991), p.3828.

Google Scholar

[10] R. Bagheri and R.A. Pearson: Ploym. Vol. 37 (1996), p.4529.

Google Scholar

[11] T. Ikeda, T. Tokunaga, D.B. Lee, N. Miyazaki, M. Todo, K. Takahashi and N. Ito: The soc. Mat. Sci. (Japan), Special Technical Publication, Vol. 2 (2001), p.177.

Google Scholar

[12] M. Todo and K. Takahasi: Eng. Sci. Reports, Kyshu Univ. Vol. 20 (1998), p.267.

Google Scholar

[13] A.S. Holik, R.P. Kambour, S.Y. Hobbs and D.G. Fink: Microstruct Sci. Vol. 7 (1979), p.357.

Google Scholar

[14] D.B. Lee, T. Ikeda, N. Miyazaki and N.S. Choi: Eng. Frac. Mech. Vol. 69 (2002), p.1363.

Google Scholar

[15] Y. Murakami: Stress intensity factors handbook, The society of Materials Science Japan Vol. 1 (Pergamon press, 1986), p.11.

Google Scholar