Failure Analysis on Rubber-Modified Epoxy Resin under Various Loading Speed Conditions

Abstract:

Article Preview

A rubber-modified epoxy resin is widely used as adhesive and matrix materials for fiber composite material. The structural reliability of composite material depends on the fracture toughness of the matrix resin. In this study, the fracture toughness and the damage zone around a crack tip in rubber-modified epoxy resin were investigated. The volume fractures of rubber (CTBN1300×8) in the rubber-modified epoxy resin were 0%, 5% and 15% under several loading speeds. The fracture toughness(KIC) and the fracture energy(GIC) were measured by using 3-point bending specimens. The 4-point bending specimens were also used to observe damage zones at the vicinity of a crack tip in modified resins. The results show that the values of the fracture toughness and the sizes of damage zones at 5% and 15% rubber content decrease with increase in loading speed.

Info:

Periodical:

Key Engineering Materials (Volumes 297-300)

Edited by:

Young-Jin Kim, Dong-Ho Bae and Yun-Jae Kim

Pages:

1907-1912

DOI:

10.4028/www.scientific.net/KEM.297-300.1907

Citation:

D. B. Lee and J. H. Kim, "Failure Analysis on Rubber-Modified Epoxy Resin under Various Loading Speed Conditions ", Key Engineering Materials, Vols. 297-300, pp. 1907-1912, 2005

Online since:

November 2005

Export:

Price:

$35.00

[1] A.F. Yee and R.A. Pearson: J. Mater. Sci. Vol. 21 (1986), p.2462.

[2] R.A. Pearson and A.F. Yee: J. Mater. Sci. Vol. 21 (1986), p.2475.

[3] T.K. Chen and Y.H. Jan: J. Mater. Sci. Vol. 27 (1992), p.111.

[4] H.R. Daghyani, Y.W. Mai and J. wu: J. Mater. Sci. Lett. Vol. 13 (1994), p.1330.

[5] A.J. Kinloch, S.J. Shaw, D.A. Tod and D.L. Hunston: Ploym. Vol. 24 (1983), p.1341.

[6] W.D. Bascom: J. Mater. Sci. Vol. 16 (1981), p.2657.

[7] L.T. Manzione and J.K. Gillham: J. Appl. Polym. Sci. Vol. 26 (1981), p.889.

[8] D.B. Lee, T. Ikeda, M. Todo, N. Miyazaki and K. Takahashi: Trans. Japan Soc. Mech. Eng. Vol. 65 (1998), p.25.

[9] R.A. Pearson and A.F. Yee: J. Mater. Sci. Vol. 21 (1991), p.3828.

[10] R. Bagheri and R.A. Pearson: Ploym. Vol. 37 (1996), p.4529.

[11] T. Ikeda, T. Tokunaga, D.B. Lee, N. Miyazaki, M. Todo, K. Takahashi and N. Ito: The soc. Mat. Sci. (Japan), Special Technical Publication, Vol. 2 (2001), p.177.

[12] M. Todo and K. Takahasi: Eng. Sci. Reports, Kyshu Univ. Vol. 20 (1998), p.267.

[13] A.S. Holik, R.P. Kambour, S.Y. Hobbs and D.G. Fink: Microstruct Sci. Vol. 7 (1979), p.357.

[14] D.B. Lee, T. Ikeda, N. Miyazaki and N.S. Choi: Eng. Frac. Mech. Vol. 69 (2002), p.1363.

[15] Y. Murakami: Stress intensity factors handbook, The society of Materials Science Japan Vol. 1 (Pergamon press, 1986), p.11.

In order to see related information, you need to Login.