An Experimental Study on Fatigue Crack Propagation under Cyclic Loading with Multiple Overloads

Abstract:

Article Preview

For many fatigue-critical parts of machines and structures, the load history under operating conditions generally involves variable amplitude loading rather than constant amplitude loading. An accurate prediction of fatigue crack propagation life under variable amplitude loading requires a thorough evaluation of the load interaction effects. In this study, fatigue tests under both constant and variable amplitude loading were carried out to investigate the overload effects on fatigue crack propagation of the notched specimens. Strain distributions around the crack tip before and after a tensile overloading were measured using the ESPI (Electronic Speckle Pattern Interferometry) system. The size of the plastic zone was determined from the measured strain distributions. The study proposes a crack propagation prediction model that incorporates the overload ratio effect. A comparative work for the overload ratio effect demonstrated that the prediction by the proposed model was in good agreement with the experimental results. The prediction of fatigue crack propagation including multiple overloads with the proposed model show also a good agreement with test results.

Info:

Periodical:

Key Engineering Materials (Volumes 297-300)

Edited by:

Young-Jin Kim, Dong-Ho Bae and Yun-Jae Kim

Pages:

2495-2500

DOI:

10.4028/www.scientific.net/KEM.297-300.2495

Citation:

K. S. Kim et al., "An Experimental Study on Fatigue Crack Propagation under Cyclic Loading with Multiple Overloads", Key Engineering Materials, Vols. 297-300, pp. 2495-2500, 2005

Online since:

November 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.