Tensile and Compressive Behaviors of Smart Electrorheological Materials

Article Preview

Abstract:

This paper presents experimental results of tensile and compressive behaviors of smart electrorheological (ER) materials. Two different ER materials ; chemically treated starch particles and polymethylaniline particles are synthesized followed by devising a sqreeze mode type apparatus associated with motion controller and data acquisition system. The field intensity, electrode velocity and initial gap are chosen as important test parameters that influence on the tensile and compressive characteristics. The maximum tensile stresses are evaluated at each condition and compared between two ER materials.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 297-300)

Pages:

646-652

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.C. Jordan and M.T. Shaw: IEEE Trans. Electr. Insul. Vol. 24 (1998), p.849.

Google Scholar

[2] H.J. Choi, M.S. Cho, J.W. Kim, C.A. Kim and M.S. Jhon: Appl. Phys. Lett. Vol. 78 (2001), p.3806.

Google Scholar

[3] R. Stanway and J.L. Sproston: ASME J. Dyn. Syst. Meas. Control Vol. 116 (1994), p.498.

Google Scholar

[4] S.G. Kim, J.W. Kim, M.S. Cho, H.J. Choi and M.S. Jhon: J. Appl. Polym. Sci. Vol. 79 (2001), p.108.

Google Scholar

[5] S.B. Choi, C.C. Cheong and G.W. Kim: Mechatronics Vol. 7 (1997), p.53.

Google Scholar

[6] G.M. Kamath, M.K. Hurt and N.M. Wereley: Smart Mater. Struct. Vol. 5 (1996), p.576.

Google Scholar

[7] S.B. Choi, Y.T. Choi and D.W. Park: ASME J. Dyn. Syst. Meas. Control Vol. 122 (2000), p.144.

Google Scholar

[8] A.K. El Wahed, J.L. Sproston, R. Stanway and E.W. Williams: J. Sound Vib. Vol. 268 (2003), p.581.

Google Scholar

[9] M. Nakano and T. Nagata: Int. J. Mod. Phys. B Vol. 16 (2002), p.2555.

Google Scholar

[10] E.W. Willams, S.G. Rigby, J.L. Sproston and R. Stanway: J. Non-Newtonian Fluid Mech. Vol. 47 (1993), p.221.

Google Scholar

[11] H.G. Lee and S.B. Choi: Mater. Design Vol. 23 (2002), p.69.

Google Scholar

[12] S.L. Vieira, M. Nakano, R. Oke and T. Nagata: Int. J. Modern Phys. B Vol. 5 (2001), p.714.

Google Scholar

[13] S.R. Hong, S.B. Choi, W.J. Jung and W.B. Jeong: J. Intel. Mat. Syst. Str. Vol. 13 (2002), p.421.

Google Scholar

[14] D.P. Park, J.H. Sung, C.A. Kim, H.J. Choi and M.S. Jhon: J. Appl. Polym. Sci. Vol. 91 (2004), p.1770.

Google Scholar

[15] M.S. Cho, H.J. Choi and W.S. Ahn: Langmuir Vol. 20 (2004), p.202.

Google Scholar

[16] D. Chotpattananont, A. Sirivat and A.M. Jamieson: Colloid Polym. Sci. Vol. 282 (2004), p.357.

Google Scholar

[17] Y.M. Han, S.C. Lim, H.G. Lee, S.B. Choi and H.J. Choi: Mater. Design Vol. 24 (2003), p.53.

Google Scholar