Nano-Porous Silica (SiO2) and Iron-Silica (Fe2O3-SiO2 ) Composite Synthesis via Reverse Microemulsion for Catalytic Applications

Abstract:

Article Preview

Nanostructured silica and silica-iron composite particles were prepared using water-in-oil (w/o) reverse microemulsion. Double microemulsion technique is used for the synthesis of both types of nanostructured particles. X-ray Diffractometry (XRD), scanning electron microscopy (SEM), nitrogen gas adsorption-desorption isotherm technique, and differential scanning calorimetry (DSC) were used to characterize the synthesized particles. The gas adsorptiondesorption measurements revealed a mesoporous structure for the silica (SiO2) particles with a surface area of 300.49 m2/g. Upon the addition of an iron microemulsion to the silica microemulsion, silica-iron nanocomposite (Fe2O3-SiO2) was achieved which gave a surface area of 69.87 m2/g. This indicated a positive impregnation of the silica mesopores that was further confirmed by energy dispersive spectrometry (EDS). The XRD of bare SiO2 gave a single broad peak whereas SiO2-Fe2O3 demonstrated additional peaks confirming α-iron insertion in mesoporous silica. DSC curve with its characteristic peaks also indicated the presence of iron nanoparticles within silica. The product silica-iron nanocomposite has potential catalytic and semiconducting applications.

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Edited by:

Ichsan Setya Putra and Djoko Suharto

Pages:

1127-1132

DOI:

10.4028/www.scientific.net/KEM.306-308.1127

Citation:

L. S. Jan et al., "Nano-Porous Silica (SiO2) and Iron-Silica (Fe2O3-SiO2 ) Composite Synthesis via Reverse Microemulsion for Catalytic Applications", Key Engineering Materials, Vols. 306-308, pp. 1127-1132, 2006

Online since:

March 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.