Numerical Simulation of Humidity-Stress in Unsaturated Argillite Tunnel

Article Preview

Abstract:

An extension of Hoek-Brown criteria to include unsaturated behavior of argillite in porous medium is presented. The model is applied to simulate evolution of saturation degree in argillite and concrete in an experimental tunnel where field investigation of thermo-hydro-mechanical response of argillite and concrete will be done. Based on the laboratory experimental data, two different flow rules of water relative permeability and water saturation degree were suggested. The general evolution rules of saturation degree in argillite and concrete with time considering the effects ventilation are obtained.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Pages:

1409-1414

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lalieux P, Thury M. Horseman S. Radioactive waste disposal in argillaceous medium. OCED/NEA Newlett, Paris, (1996), pp.34-36.

Google Scholar

[2] Alonso, E. E., Gens, A. and Josa A. A constitutive model for partially saturated soils. Géotechnique, Vol. 40(1990), pp.405-430.

DOI: 10.1680/geot.1990.40.3.405

Google Scholar

[3] Alonso, E. E., Vaunat J., Gens A. Modelling the mechanical behaviour of expansive argillites. Engineering Geology, Vol. 54(1999), pp.173-183.

DOI: 10.1016/s0013-7952(99)00079-4

Google Scholar

[4] Maatouk, A., Leroueil, S., La Rochelle, P. Yielding and critical state of a collapsible unsaturated silty soil. Géotechnique, Vol. 45(1995), pp.435-477.

DOI: 10.1680/geot.1995.45.3.465

Google Scholar

[5] Schmitt L, Forsans T, Santarelli FJ. Shale testing and capillary phenomena. Int. J. Rock Mech Min Sci Geomech Abstr, Vol. 31(1994), pp.411-427.

DOI: 10.1016/0148-9062(94)90145-7

Google Scholar

[6] F. Armero, Formulation and . nite implementation of a multiplicative model of coupled poro-plasticity at . nite strains under fully saturated conditions, Comput. Methods Appl. Mech. Engrg. Vol. 171 (1999), pp.205-241.

DOI: 10.1016/s0045-7825(98)00211-4

Google Scholar

[7] Coussy, Thermomechanics of saturated porous solids in finite deformation, Eur. J. Mech. (A/Solids) Vol. 8 (1989), pp.1-14.

Google Scholar

[8] R.I. Borja, E. Alarc on, A mathematical framework for finite strain elastoplastic consolidation. Part 1: balance laws variational formulation, and linearization, Comput. Meth. Appl. Mech. Engrg. Vol. 122 (1995), pp.145-171.

DOI: 10.1016/0045-7825(94)00720-8

Google Scholar

[9] S. Diebels, W. Ehlers, Dynamic analysis of a fully saturated porous medium accounting for geometrical and material nonlinearities, Int. J. Num. Meth. Engrg. Vol. 39 (1996), pp.81-97.

DOI: 10.1002/(sici)1097-0207(19960115)39:1<81::aid-nme840>3.0.co;2-b

Google Scholar

[10] F. Bourgeois, J.F. Shao, O. Ozanam. An elastoplastic model for unsaturated rocks and concrete. Mechanics Research Communications , Vol. 29(2002), pp.383-390.

DOI: 10.1016/s0093-6413(02)00306-3

Google Scholar

[11] Chen W. Z., Zhu W. S., Li S. C., Qiu X. B. Evaluation of Reinforced Concrete Design for an Underground Outlet Manifold in Shanxi Yellow River Diversion Project. Rock Mechanics and Rock Engineering. Vol. 37(2004), pp.213-228.

DOI: 10.1007/s00603-003-0013-0

Google Scholar

[12] Chen W. Z., Zhu W. S. and Shao J. F. Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation. International Journal of Rock Mechanics and Mining Sciences, Vol. 41(2004), pp.669-677.

DOI: 10.1016/j.ijrmms.2003.01.003

Google Scholar

[13] Jiao YY, Zhao J, Ge XR. New formulation and validation of the three-dimensional extension of a static relaxation method. Advances in Engineering Software. Vol. 35(2004), pp.317-323.

DOI: 10.1016/j.advengsoft.2004.04.004

Google Scholar

[14] Pietruszczak S., Jiang, J. & Mirza F. A. An elastoplastic constitutive model for concrete. Int. J. Solids & Structures, Vol. 24(1988), pp.705-722.

DOI: 10.1016/0020-7683(88)90018-2

Google Scholar

[15] Hoek, E. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. Int. J. Rock Mech. & Mining Sci. & Geomechanics Abstracts. 12(1990) 227-229.

DOI: 10.1016/0148-9062(90)94333-o

Google Scholar

[16] J.F. Shao, G. Duveau, W. Chen. Modelisation de l'experimentation REP. LML, Universite de Scientific de Lille, (2002).

Google Scholar