Super Long Life Fatigue of AE42 and AM60 Magnesium Alloys

Abstract:

Article Preview

Magnesium alloys, on account of their lightweight, find useful applications in the automotive sector. During service, they experience very high number of fatigue cycles. Therefore, the understanding of their long life fatigue behavior becomes extremely important. This is possible by using ultrasonic fatigue testing, which is the only feasible way of doing it. In this study, the two such alloys viz. AE42 and AM60 has been investigated for their long life fatigue characteristics under fully reversed loading conditions, using a piezoelectric fatigue testing machine operating at a frequency of 20 kHz. The S-N data does not reach a horizontal asymptote at 107 cycles in either of the alloys. However, the alloy AM60 seems to show a fatigue limit at about at 109 cycles. The fractures examined by scanning electron microscopy (SEM) were found to be brittle in character. In very high cycle fatigue conditions, the crack was found to initiate from the specimen subsurface.

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Edited by:

Ichsan Setya Putra and Djoko Suharto

Pages:

181-186

DOI:

10.4028/www.scientific.net/KEM.306-308.181

Citation:

Q.Y. Wang et al., "Super Long Life Fatigue of AE42 and AM60 Magnesium Alloys", Key Engineering Materials, Vols. 306-308, pp. 181-186, 2006

Online since:

March 2006

Export:

Price:

$35.00

[1] H. Mayer, B. Zettl, and S.E. Stanzl-Tschegg rt al.: Inter J Fatigue Vol. 25 (2003) p.245.

[2] F.H. Froes, D. Eliezer and E.L. Aghion: JOM Vol. 50 (1998), p.30.

[3] G.I. Makar and J. Kruger: Int Mater Rev Vol. 38 (1993), p.138.

[4] H. Alves, U. Koster, E. Aghion and D. Eliezer: Mater Tech Vol. 16 (2001), p.110.

[5] O. Lunder, T.K. Aune and K. Nisancioglu: Nat Ass Corr Eng Vol. 43 (1987), p.291.

[6] G. Song, A. Atrens, M. Dargusch: Corros Sci Vol. 41 (1999), p.249.

[7] R. Ambat, N.N. Aung, W. Zhou: Corros Sci Vol. 42 (2000), p.1433.

[8] E. Ghali: Mater Sci Forum Vol. 350 (2000), p. 261p.

[9] K. Gall, G. Biallas, D.L. McDowell, et al.: Inter J Fatigue Vol. 26 (2004) p.59.

[10] I. Marines, C. Bathias, et al: Int. J. Fatigue Vol. 25 (2003), p.1101.

[11] Q.Y. Wang et al: Fatigue Fract Engng Mater Struct Vol. 22 (1999), p.673.

[12] K. Tokaji et al: Materials Science and Engineering Vol. A345 (2003), p.197.

[13] Q.Y. Wang, M.R. Sriraman, et al.: Key Engng. Mater. In press (2005).

[14] I. Marines et al: Int. J. Fatigue Vol. 25 (2003), p.1037.

[15] T. Naito et al: Metal. Trans. Vol. 15A (1984), p.1431.

[16] H. Emura et al: Trans. Jpn. Soc. Mech. Eng. Vol. A55 (1989), p.45.

[17] Q.Y. Wang et al: Fatigue Fract Engng Mater Struct Vol. 22 (1999), p.667.

[18] Q.Y. Wang et al: Int. J. of Fatigue Vol. 24 (2002), p.1269.

[19] N. Yan, Q.Y. Wang, et al: Key Engng. Mater. Vol. 243-244 (2003), p.321.

[20] K. Shiozawa and L. Lu: Fatigue Fract. Engng. Mater. Struct. Vol. 25 (2002), p.813.

[21] Y. Murakami: Int. J. of Fatigue Vol. 20 (1998), p.661.

[22] C. Bathias: Fatigue Fract. Engng. Mater. Struct. Vol. 22 (1999), p.559.

[23] Q.Y. Wang, N. Kawagoishi, et al: J Mater Science, Vol. 39(2004), p.365.

[24] Q.Y. Wang, N. Kawagoishi et al.: Structural Eng & Mechanics, Vol. 18 (2004), p.277.

[25] S.N. Perov, V.V. Ogarevic and R.I. Stephens: J Eng Mater Tech Vol. 115 (1993), 385-390.

[26] D.L. Goodenberger and R.I. Stephens: J Eng Mater Tech Vol. 115 (1993), 391-397.

[27] R.I. Stephens, C.D. Schrader and K.B. Lease: J Eng Mater Tech Vol. 117 (1995), 293-298.

In order to see related information, you need to Login.