Super Long Life Fatigue of AE42 and AM60 Magnesium Alloys

Article Preview

Abstract:

Magnesium alloys, on account of their lightweight, find useful applications in the automotive sector. During service, they experience very high number of fatigue cycles. Therefore, the understanding of their long life fatigue behavior becomes extremely important. This is possible by using ultrasonic fatigue testing, which is the only feasible way of doing it. In this study, the two such alloys viz. AE42 and AM60 has been investigated for their long life fatigue characteristics under fully reversed loading conditions, using a piezoelectric fatigue testing machine operating at a frequency of 20 kHz. The S-N data does not reach a horizontal asymptote at 107 cycles in either of the alloys. However, the alloy AM60 seems to show a fatigue limit at about at 109 cycles. The fractures examined by scanning electron microscopy (SEM) were found to be brittle in character. In very high cycle fatigue conditions, the crack was found to initiate from the specimen subsurface.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Pages:

181-186

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Mayer, B. Zettl, and S.E. Stanzl-Tschegg rt al.: Inter J Fatigue Vol. 25 (2003) p.245.

Google Scholar

[2] F.H. Froes, D. Eliezer and E.L. Aghion: JOM Vol. 50 (1998), p.30.

Google Scholar

[3] G.I. Makar and J. Kruger: Int Mater Rev Vol. 38 (1993), p.138.

Google Scholar

[4] H. Alves, U. Koster, E. Aghion and D. Eliezer: Mater Tech Vol. 16 (2001), p.110.

Google Scholar

[5] O. Lunder, T.K. Aune and K. Nisancioglu: Nat Ass Corr Eng Vol. 43 (1987), p.291.

Google Scholar

[6] G. Song, A. Atrens, M. Dargusch: Corros Sci Vol. 41 (1999), p.249.

Google Scholar

[7] R. Ambat, N.N. Aung, W. Zhou: Corros Sci Vol. 42 (2000), p.1433.

Google Scholar

[8] E. Ghali: Mater Sci Forum Vol. 350 (2000), p. 261p.

Google Scholar

[9] K. Gall, G. Biallas, D.L. McDowell, et al.: Inter J Fatigue Vol. 26 (2004) p.59.

Google Scholar

[10] I. Marines, C. Bathias, et al: Int. J. Fatigue Vol. 25 (2003), p.1101.

Google Scholar

[11] Q.Y. Wang et al: Fatigue Fract Engng Mater Struct Vol. 22 (1999), p.673.

Google Scholar

[12] K. Tokaji et al: Materials Science and Engineering Vol. A345 (2003), p.197.

Google Scholar

[13] Q.Y. Wang, M.R. Sriraman, et al.: Key Engng. Mater. In press (2005).

Google Scholar

[14] I. Marines et al: Int. J. Fatigue Vol. 25 (2003), p.1037.

Google Scholar

[15] T. Naito et al: Metal. Trans. Vol. 15A (1984), p.1431.

Google Scholar

[16] H. Emura et al: Trans. Jpn. Soc. Mech. Eng. Vol. A55 (1989), p.45.

Google Scholar

[17] Q.Y. Wang et al: Fatigue Fract Engng Mater Struct Vol. 22 (1999), p.667.

Google Scholar

[18] Q.Y. Wang et al: Int. J. of Fatigue Vol. 24 (2002), p.1269.

Google Scholar

[19] N. Yan, Q.Y. Wang, et al: Key Engng. Mater. Vol. 243-244 (2003), p.321.

Google Scholar

[20] K. Shiozawa and L. Lu: Fatigue Fract. Engng. Mater. Struct. Vol. 25 (2002), p.813.

Google Scholar

[21] Y. Murakami: Int. J. of Fatigue Vol. 20 (1998), p.661.

Google Scholar

[22] C. Bathias: Fatigue Fract. Engng. Mater. Struct. Vol. 22 (1999), p.559.

Google Scholar

[23] Q.Y. Wang, N. Kawagoishi, et al: J Mater Science, Vol. 39(2004), p.365.

Google Scholar

[24] Q.Y. Wang, N. Kawagoishi et al.: Structural Eng & Mechanics, Vol. 18 (2004), p.277.

Google Scholar

[25] S.N. Perov, V.V. Ogarevic and R.I. Stephens: J Eng Mater Tech Vol. 115 (1993), 385-390.

Google Scholar

[26] D.L. Goodenberger and R.I. Stephens: J Eng Mater Tech Vol. 115 (1993), 391-397.

Google Scholar

[27] R.I. Stephens, C.D. Schrader and K.B. Lease: J Eng Mater Tech Vol. 117 (1995), 293-298.

Google Scholar