Numerical and Experimental Study on Railway Impact Energy Absorption Using Tube External Inversion Mechanism at Real Scale

Abstract:

Article Preview

Impact energy and deceleration at a certain time are the most influenced factor to passenger’s safety when collision between railway vehicles occurred. In this paper, forced external inversion mechanism is considered as impact energy absorber. This mechanism is selected due to its constant inversion load along uniform tube [5] and the impact force is reduced because of its inertia effect [7]. Material used as energy absorber is mild steel. Numerical analysis using finite element method is utilized to study the energy absorption capacity and deceleration characteristic of tube external inversion mechanism for complex transient problem of collision. The real scale experimental study is used to validate the numerical analysis by crashing a moving vehicle to static train series where the impact energy absorber module using external inversion mechanism is attached in the tip of static train series. Characteristic that consider in numerical and experimental study are deformation and contact force. The deformation differences between numerical and experimental study are under 9%. Whereas for contact force, the experimental result of contact force disposed under 8% of numerical result for velocity of moving train at 10 and 15 km/h.

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Edited by:

Ichsan Setya Putra and Djoko Suharto

Pages:

315-320

DOI:

10.4028/www.scientific.net/KEM.306-308.315

Citation:

I. W. Puja et al., "Numerical and Experimental Study on Railway Impact Energy Absorption Using Tube External Inversion Mechanism at Real Scale", Key Engineering Materials, Vols. 306-308, pp. 315-320, 2006

Online since:

March 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.