Interplay between Fracture and Domain Switching of Ferroelectrics

Article Preview

Abstract:

Applications of above-coercive electric fields lead to domain switching of a large or global scale. Large scale switching model is proposed to deal with load-induced domains witching in experiment. Both a discussion of crack initiation via the stress intensity factor and a discussion of crack path stability via T-stress are presented. The theoretical predictions and the experimental data roughly coincide for crack initiation, propagation and stability phenomena. Attention is also extended to consider the effect of non-uniform ferro-elastic domain switching in the vicinity of a crack. The domain switching zone is divided into a saturated inner core and an active surrounding annulus. Toughening for ferroelectrics with different poling states is estimated via Reuss type approximation. Solutions obtained according to spherical and cylindrical inclusions cover the range of experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Pages:

501-510

Citation:

Online since:

March 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Uchino: Ferroelectric Devices (Marcel Dekker, New York 2000).

Google Scholar

[2] S.C. Hwang, C.S. Lynch and R.M. McMeeking: Acta Metall. Mater. Vol. 43 (1995), p. (2073).

Google Scholar

[3] T. Zhu and W. Yang: Acta Mater. Vol. 41 (1997), p.4695, Errata, Acta Mater. Vol. 46 (1999), p.2251.

Google Scholar

[4] W. Yang and T. Zhu: J. Mech. Phys. Solids Vol. 46 (1998), p.291.

Google Scholar

[5] W. Yang: Mechatronic Reliability (Tsinghua University Press and Springer-Verlag, Berlin 2002).

Google Scholar

[6] T. Zhu and W. Yang: J. Mech. Phys. Solids Vol. 47 (1999), p.81.

Google Scholar

[7] B. Cotterell and J.R. Rice: Int. J. Fract. Vol. 16 (1980), p.155.

Google Scholar

[8] B.N. Cox, D.B. Marshall, D. Kouris and T. Mura: J. Eng. Mater. Technol. -T. ASME Vol. 110 (1988), p.105.

Google Scholar

[9] D.B. Marshall, M.C. Shaw, R.H. Dauskardt, R.O. Ritchie, M.J. Readey and A.H. Heuer: J. Am. Ceram. Soc. Vol. 73 (1990), p.2659.

Google Scholar

[10] A. Förderreuther, G. Thurn, A. Zimmermann and F. Aldinger: J. Eur. Ceram. Soc. Vol. 22 (2002), p. (2023).

Google Scholar

[11] S. Hackemann and W. Pfeiffer: J. Eur. Ceram. Soc. Vol. 23 (2003), p.141.

Google Scholar

[12] B. Budiansky, J.W. Hutchinson and J.C. Lambropoulos: Int. J. Solids Struct. Vol. 19 (1983), p.337.

Google Scholar

[13] C. Hsueh and P.F. Becher: J. Am. Ceram. Soc. Vol. 71 (1988), p.494.

Google Scholar

[14] C.S. Yu, D.K. Shetty, M.C. Shaw and D.B. Marshall: J. Am. Ceram. Soc. Vol. 75 (1992), p.2991.

Google Scholar

[15] J. Nuffer, D.C. Lupascu and J. Rödel: Acta Mater. Vol. 48 (2000), p.3783.

Google Scholar

[16] A.B. Kounga, T. Fett, D.C. Lupascu and J. Rödel: J. Am. Ceram. Soc. Vol. 86 (2003), p. (1973).

Google Scholar

[17] D. Zhou: Experimental investigation of non-linear constitutive behavior of PZT piezoceramics (Ph.D. Thesis, Karlsruhe University 2003).

Google Scholar

[18] T. Fett: Compendium of T-stress solutions (FZKA 6057, Forschungszentrum Karlsruhe, 1998).

Google Scholar

[19] F. Erdogan: Proceedings of the Fourth U.S. National Congress of Applied mechanics. (ASME 1962, p.547).

Google Scholar

[20] G.C. Sih: Transactios, the Chinese Association for the Advancement of Sciences (Taipei 1962, p.25).

Google Scholar

[21] W. Yang, H.T. Wang, F. Fang and Y.Q. Cui: Theor. Appl. Fract. Mec. Vol. 37 (2001), p.397.

Google Scholar

[22] B. Jaffe, W.R. Cook and H. Jaffe: Piezoelectric Ceramics (Academic Press, London and New York 1971).

Google Scholar

[23] M.E. Lines and A.M. Glass: Principles and Applications of ferroelectrics and related materials (Clardeon Press, Oxford 1979).

Google Scholar

[24] A. Kolleck, G.A. Schneider and F.A. Meschke: Acta Mater. Vol. 48 (2000), p.4099.

Google Scholar

[25] H.C. Cao and G. Evans: J. Am. Ceram. Soc. Vol. 76 (1993), p.890.

Google Scholar

[26] A.B. Schäufele and K.H. Härdtl: J. Am. Ceram. Soc. Vol. 79 (1996), p.2637.

Google Scholar

[27] H. Gao: J. Mech. Phys. Solids Vol. 37 (1989), p.133.

Google Scholar

[28] D.A. Hall, A. Steuwer, B. Cherdhirunkorn, P.J. Withers and T. Mori: J. Mech. Phys. Solids Vol. 37 (2005), p.133.

Google Scholar

[29] W. Yang, F. Fang and M. Tao: Int. J. Solids Struct. Vol. 38 (2001), p.2203.

Google Scholar