Research of 3D EFG of Limiting Nodal Point Number and Applied for Three-Dimensional Elastic Problem

Article Preview

Abstract:

The formulation and implementation of three-dimensional element free Galerkin method (3D EFG) are developed. A simple and efficient scheme for a variable domain of influence stipulates that a constant number of nodal points are visible from each integration location is proposed. This method significantly increases the efficiency of the variable domain of influence by limiting the size of the least-square problem that is solved when computing approximate functions. The 3D EFG methods based on moving least square method use only nodal points to built local and global approximation. Discrete model of the 3D EFG for three-dimensional elastic problems is derived by least potential energy principle. Reference to the 2D EFG, in the 3D EFG, it is enforced to meet displacements boundary conditions by use of limiting nodal point number method and penalty method. The stress concentration of a small column-shaped cavity in a cube subjected to uniaxial uniform tension at two opposing faces in far field. Compared the approximation solutions with theory ones, the results indicate that the 3D EFG is validity in solving three-dimensional elastic problems and the limiting nodal point number method is validity.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Pages:

721-726

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Mackerle. Mesh generation and refinement for FEM and BEM-a bibliography: Finite Elem. Andl Des (1993), P. 177~188.

DOI: 10.1016/0168-874x(93)90064-w

Google Scholar

[2] Tianxiang Liu, Geng Liu, Lie Yu. Research progress on meshless method: J. Machine Engng. Vol. 38(5)(2002), P. 7-12(in Chinese).

Google Scholar

[3] Yongli Wu. Comput. Solid Mech. Method: Science Press, (2003), P. 258-296(in Chinese).

Google Scholar

[4] T. Belytschko, Y. Y. Lu and L. Gu, Element free Galerkin Methods: Int. J. Numer. Meth. Engng. Vol. 37(1994), P. 229-256.

DOI: 10.1002/nme.1620370205

Google Scholar

[5] I. Babuska, JM. Melenk. The partition of unity method: Int. J. Number. Meth. Engng. Vol. 40 (1997), P. 727-758.

DOI: 10.1002/(sici)1097-0207(19970228)40:4<727::aid-nme86>3.0.co;2-n

Google Scholar

[6] FH. Harlow. The particle-in-cell computing methods for fluid dynamics: Methods Comput. Phys. Vol. 3(1964), P. 319-343.

Google Scholar

[7] Shuchen Li, Yumin Cheng. Meshless numerical manifold method based on unit partition: Acta Mechanica Sinica, Vol. 36(4)(2004), P. 496-500(in Chinese).

Google Scholar

[8] Xiong Zhang, Kang Zhu Song, Ming Wan Lu. Meshless methods based on collocation with radial basis function: Comp. Mech., Vol. 26(4)(2000), P. 333-343.

Google Scholar

[9] Y. Y. Lu, T. Belytschko and L. Gu. A new implementation of the element free Galerkin Methods: Comput. Methods Appl. Mech. Engng., Vol. 113(1994), P. 397-414.

DOI: 10.1016/0045-7825(94)90056-6

Google Scholar

[10] Xong Zhang, Kangzhu Song, Mingwan Lu. Application and research progress of meshless: J. Comput. Mech., Vol. 20(6)(2003), P. 730-742(in Chinese).

Google Scholar

[11] T. Belytschko, Y. Y. Lu and L. Gu. Crack propagation by element free Galerkin Methods: Engng. Fracture Mech., Vol. 5(12)(1995), P. 295-315.

DOI: 10.1016/0013-7944(94)00153-9

Google Scholar

[12] P. Krysl, T. Belytschko. Element-free Galerkin method: convergence of the continuous and dis- continuous shape functions: Comput. Methods Appl. Mech. Engng., Vol. 14(8)(1997), P. 257-277.

DOI: 10.1016/s0045-7825(96)00007-2

Google Scholar

[13] P. Krysl, T. Belytschko. The element-free Galerkin method for dynamic propagation of arbitrary 3-D cracks: Int. J. Numer. Meth. Engng., Vol. 44(1999), P. 767-800.

DOI: 10.1002/(sici)1097-0207(19990228)44:6<767::aid-nme524>3.0.co;2-g

Google Scholar

[14] T. Belytschko, P. Krysl and Y. Kronganz. A tree dimensional explicit element free Galerkin method: Int. J. Numer. Meth. Fluids, Vol. 24(1997), P. 1253-1270.

DOI: 10.1002/(sici)1097-0363(199706)24:12<1253::aid-fld558>3.0.co;2-z

Google Scholar

[15] W. Barry and S. Saigal. A three dimensional element free Galerkin elastic and elastoplastic formulation: Int. J. Numer. Meth. Engng., Vol. 46(1999), P. 671-693.

DOI: 10.1002/(sici)1097-0207(19991020)46:5<671::aid-nme650>3.0.co;2-9

Google Scholar

[16] Yunjin Hu, Weiyuan Zhou, Xiaodong Kou. Three dimensional element free method and its application: J. Rock Mech. and Engng., Vol. 23(7)(2004), P. 1136-1140(in Chinese).

Google Scholar

[17] I. Kaljevic, S. Saigal. An improved element-free Galerkin method: Int. J. Numer. Meth. Engng. Vol. 40 (1997), P. 2953-2974.

DOI: 10.1002/(sici)1097-0207(19970830)40:16<2953::aid-nme201>3.0.co;2-s

Google Scholar

[18] A.V. Dyskin etc. Some Experimental Results on Three Dimensional Crack Propagation in Com pression: Mechanics of Jointed and Faulted Rock, Rossmanith(ed. )(1995), Balkema, Rotterdam.

Google Scholar

[19] M. Fleming, Y. A. Chu, B. Moran, T. Belytschko. Enriched element-free Galerkin methods for crack tip fields: Int. J. Numer. Methods Engng., Vol. 40(1997), P. 1483-1504.

DOI: 10.1002/(sici)1097-0207(19970430)40:8<1483::aid-nme123>3.0.co;2-6

Google Scholar

[20] Xiong Zhang, X. H. Liu, K Z Song etc. Least-square collocation meshless method: Int. J. Numer. Methods Engng., Vol. 51(9)(2001), P. 1089-1100.

DOI: 10.1002/nme.200

Google Scholar

[21] S. N. Atluri, T. Zhu. The Meshless Local Petrov-Galerkin (MLPG) Approach for Solving Problems in Elasto-plastics: Comput. Mech., Vol. 25(2000), P. 169-179.

DOI: 10.1007/s004660050467

Google Scholar

[22] Timoshenko SP., Goodier JN. Theory of Elasticity: 3 rd. ed. New York: McGraw Hill, (1976).

Google Scholar