Bioglass® Coatings on Superelastic NiTi Wires by Electrophoretic Deposition (EPD)

Article Preview

Abstract:

45S5 Bioglass® coatings have been produced on superelastic nickel-titanium wires using electrophoretic deposition (EPD). Aqueous suspensions of Bioglass® particles (< 5 &m mean particle size) were used. EPD led to the formation of thick and uniform coatings covering the wires very homogeneously, without the development of any microcracks during the drying stage. Best results were achieved with suspensions containing 20 wt% Bioglass®, an applied voltage of 5 V, and a deposition time of 5 min. Samples sintered for 1 hour at temperatures > 800 °C exhibited diffusion of nickel and titanium into the Bioglass® coating. Scanning electron microscopy (SEM) was used to analyse the microstructure of the Bioglass® coatings in terms of level of uniformity, densification, and to discover the possible presence of microcracks, as well as to gain information about the thickness of the coating produced on the different substrates. The results demonstrate that the EPD technique is a very convenient method to produce uniform Bioglass® coatings on wires for biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-224

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Bogdanski, M. Epple, S. A. Esenwein, G. Muhr, W. Petzoldt, O. Prymak, K. Weinert and M. Koeller, Mater. Sci. Eng. A Vol. 378 (2004) p.527.

DOI: 10.1016/j.msea.2003.11.071

Google Scholar

[2] J. Choi, D. Bogdanski, M. Koeller, S. A. Esenwein, D. Mueller, G. Muhr and M. Epple: Biomater. Vol. 24 (2003), p.3689.

Google Scholar

[3] D. Starosvetsky, I. Gotman: Biomater. Vol. 22 (2001), p.1853.

Google Scholar

[4] L. L. Hench and J. Wilson: An Introduction to Bioceramics, (World Scientific, Singapore 1993).

Google Scholar

[5] K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer and S. Mahajan: Encyclopedia of Materials: Science and Technology (Elsevier Science Ltd, Oxford 2003).

DOI: 10.1016/b0-08-043152-6/01863-5

Google Scholar

[6] L. L. Hench, R. J. Splinter, W. C. Allen and T. K. Greenlee: J. Biomed. Mater. Res. Vol. 2(1) (1971), p.117.

Google Scholar

[7] L. L. Hench: J. Am. Cer. Soc. Vol. 81(7) (1998), p.1705.

Google Scholar

[8] L. L. Hench: J. Am. Cer. Soc. Vol. 74(7) (1991), p.1487.

Google Scholar

[9] T. Kokubo, H. -M. Kim and M. Kawashita: Biomater. Vol. 24(13) (2003), p.2161.

Google Scholar

[10] J. K. Bibby, P. M. Mummery, N. Bubb and D. J. Wood: Glass Tech. Vol. 45(2) (2004), p.80.

Google Scholar

[11] L. L. Hench, in: K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan: Encyclopedia of Materials: Science and Technology (Elsevier Science Ltd, Oxford 2003).

DOI: 10.1016/b0-08-043152-6/01863-5

Google Scholar

[12] A. R. Boccaccini and I. Zhitomirsky: Current Opinion in Solid State & Mater. Sci. Vol. 6(3) (2002) p.251.

Google Scholar

[13] C. Wang, J. Ma, W. Cheng and R. Zhang: Mater. Lett. Vol. 57(1) (2002), p.99.

Google Scholar

[14] O. O. Van der Biest and L. J. Vandeperre: Ann. Rev. Mater. Sci. Vol. 29 (1999) p.327.

Google Scholar

[15] P. Sarkar and P. S. Nicholson: J. Am. Cer. Soc. Vol. 79(8) (1996), p. (1987).

Google Scholar

[16] P. Mondragón-Cortez and G. Vargas-Gutiérrez: Mater. Letters Vol. 58(7-8) (2004), p.1336.

Google Scholar

[17] J. -I. Hamagami, Y. Ato and K. Kanamura: Solid State Ionics Vol. 172 (2004), p.331.

Google Scholar

[18] R. Wang, Y. X. Hu: J. Biomed. Mater. Res. Part A Vol. 67A(1) (2003), p.270.

Google Scholar

[19] J. Ma, C. Wang and K. W. Peng: Biomater. Vol. 24(20) (2003), p.3505.

Google Scholar

[20] J. Ma, C. H. Liang, L. B. Kong and C. Wang: J. Mater. Sci. - Mater. Med. Vol. 14(9) (2003), p.797.

Google Scholar

[21] T. M. Sridhar, U. Kamachi Mudali and M. Subbaiyan: Corrosion Sci. Vol. 45(2) (2003), p.237.

Google Scholar

[22] A. Stoch, A. Brozek, G. Kmita, J. Stoch, W. Jastrzebski and A. Rakowska, Journal of Molecular Structure Vol. 596(1-3) (2001), p.191.

DOI: 10.1016/s0022-2860(01)00716-5

Google Scholar

[23] I. Zhitomirsky: Mater. Letters Vol. 42(4) (2000), p.262.

Google Scholar

[24] I. Zhitomirsky: J. Europ. Cer. Soc. Vol. 18(7) (1998), p.849.

Google Scholar

[25] J. K. Bibby, P. M. Mummery, N. Bubb and D. J. Wood: Bioceram. Vol. 15 (2003), p.279.

Google Scholar

[26] N. Ozawa, Y. Ideta, K. Shimizu and T. Yao: Bioceram. Vol. 15 (2003), p.67.

Google Scholar

[27] P. Ducheyne, S. Radin, M. Heughebaert and J. C. Heughebaert: Biomater. Vol. 11(4) (1990), p.244.

Google Scholar

[28] J. A. Roether, A. R. Boccaccini, L. L. Hench, V. Maquet, S. Gautier and R. Jérôme: Biomater. Vol. 23(18) (2002), p.3871.

Google Scholar

[29] K. Otsuka, C. M. Wayman: Shape memory materials (Cambridge University Press, Cambridge 1999).

Google Scholar