From Niihara's Equation to Peculiar Nanoindentation Deformation of Ceramics and Semiconductors

Abstract:

Article Preview

The present paper is based on the contribution by Niihara and his co-workers devoted to indentation testing of ceramic materials, while it provides new observations of peculiarities registered during nanoindentation of sapphire, GaAs and InGaNAs deposited by MBE-technique. Exploiting previous studies of the spherical indentation in sapphire, the present authors recognized different causes that result in the apparently similar pop-in phenomenon for sapphire and GaAs-based semiconductors. The finite element modeling of the quasi-plastic nanoindentation of the ( 1 1 20) plane of sapphire with the elastically deformable tip confirmed that the deformation of sapphire is governed by twinning which causes pop-in phenomenon, as suggested earlier by Niihara et al. The singularities registered for GaAs-based crystals are associated with dislocation movement within {111} slip bands, which is in contrast to the case of sapphire.

Info:

Periodical:

Key Engineering Materials (Volumes 317-318)

Edited by:

T. Ohji, T. Sekino and K. Niihara

Pages:

293-296

DOI:

10.4028/www.scientific.net/KEM.317-318.293

Citation:

R. Nowak et al., "From Niihara's Equation to Peculiar Nanoindentation Deformation of Ceramics and Semiconductors", Key Engineering Materials, Vols. 317-318, pp. 293-296, 2006

Online since:

August 2006

Export:

Price:

$35.00

[1] K. Niihara, The Centennial Memorial Issue Ceramic Society of Japan Vol. 99 (1991), p.974.

[2] K. Niihara, T. Sekino, T. Nakayama and T. Kusunose, J. Chem. Eng. Vol. 48 (2003), p.409.

[3] K. Niihara and T. Hirai, J. Mater. Sci. 14 (1979), p. (1952).

[4] T. Hirai and K. Niihara, J. Mater. Sci. 14 (1979), p.2253.

[5] K. Niihara and T. Hirai, J. Mater. Sci. 12 (1977), p.1243.

[6] K. Niihara, R. Morena and D.P.H. Hasselman, J. Mater. Sci. Lett. 1 (1982), p.13.

[7] K. Niihara, R. Morena and D.P.H. Hasselman, J. Am. Ceram. Soc. 65 (1982), p.116.

[8] K. Niihara, R. Morena and D.P.H. Hasselman, Fract. Mech. Ceram. 5 (1983), p.97.

[9] K. Niihara, J. Mater. Sci. Lett. 2 (1983), p.221.

[10] K. Niihara and T. Hirai, J. Less-Common Met. 92 (1983), p.15.

[11] K. Niihara, Ceram. Jap. 21 (1986), p.581.

[12] R. Nowak, T. Sekino, S. Maruno and K. Niihara, Appl. Phys. Lett. 68 (1996), p.1063.

[13] R. Nowak, T. Sekino and K. Niihara, Phil. Mag. A74 (1996), p.171.

[14] R. Nowak, T. Sekino and K. Niihara, Acta mater. 47 (1999), p.4329.

[15] R. Nowak, T. Manninen, K. Heiskanen, T. Sekino, A. Hikasa, K. Niihara and T. Takagi, Appl. Phys. Lett. 83 (2003), p.5214.

[16] J. Li, K.J. Van Vliet, T. Zhu, S. Yip, S. Suresh, Nature 418 (2002), p.307.

[17] D. Lorenz, A. Zecker, U. Hilpert, P. Grau, H. Johanssen and H. Leipner, Phys. Rev. B67 (2003), p.172101.

[18] D. Bahr, D. Kramer, and W. Gerberich, Acta Mater. 46 (1998), p.3605.

[19] J.E. Bradby, J.S. Williams, J.W. Leung, M.V. Swain and P. Munroe, Appl. Phys. Lett. 78 (2001), p.3235.

In order to see related information, you need to Login.