The Intelligent Catalyst: Pd-Perovskite Having the Self-Regenerative Function in a Wide Temperature Range

Article Preview

Abstract:

An innovative Pd-perovskite “Intelligent Catalyst”, which exhibits a greatly improved durability owing to the self-regeneration function of Pd nanoparticles, has been developed. The Pd-perovskite catalyst was prepared by the alkoxide method, and X-ray absorption fine structure (XAFS) measurements were carried out in SPring-8 using the 8-GeV synchrotron radiation. Pd occupied the B-site (6-fold coordination) of the perovskite lattice in the oxidative atmosphere, and segregated out to form metallic nanoparticles in the reductive atmosphere. The catalyst retained a predominantly perovskite structure throughout a redox cycle of the exhaust-gas, while the local structure around Pd could be changed in a completely reversible manner. The agglomeration and growth of the metal particles is suppressed as a result of the Pd movement between inside and outside the perovskite lattice. This function enables an automotive catalyst to regenerate itself into an active state in fluctuation typically encountered in the exhaust gas from the gasoline engine. And it is revealed, by in-situ and ex-situ XAFS analyses, that the self-regenerative function of Pd occurred in a wide temperature range from very low to high one. The intelligent catalyst is one solution for precious metals supply and demand problem, and is expected to become the global standard of the catalyst technology.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 317-318)

Pages:

827-832

Citation:

Online since:

August 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] http: /snet. sntt. or. jp/imf/: The intelligent materials forum 1990 , The society of non-traditional technology.

Google Scholar

[2] The data are quoted and illustrated graphically, from Platinum Interim Review, Johnson Matthey.

Google Scholar

[3] Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto and N. Hamada, Nature, 418 (2002) 164.

DOI: 10.1038/nature00893

Google Scholar

[4] H. Tanaka, M. Uenishi, I. Tan, M. Kimura, Y. Nishihata and J. Mizuki, SAE Paper, 2001-1-1301 (Society of Automotive Engineers, Warrendale, Pennsylvania, 2001).

DOI: 10.4271/2001-01-1301

Google Scholar

[5] H. Tanaka, M. Uenishi, I. Tan, M. Kimura and K. Dohmae, Topics in Catalysis, Vol. 16/17, No. 1-4 (2001) 63.

DOI: 10.1023/a:1016626713430

Google Scholar

[6] H. Tanaka, Kankyo Shokubai handbook, (ed. ) M. Iwamoto, (NTS, Tokyo, 2001) 320.

Google Scholar

[7] M. Uenishi, I. Tan and H. Tanaka, J-SAE, Vol. 55, No. 9 (2001) 81.

Google Scholar

[8] D.B. Meadowcroft, Nature, 226 (1970) 847.

Google Scholar

[9] Parravano, J. Chem. Phys., 20, (1952) 342.

Google Scholar

[10] W.F. Libby, Science, 171 (1971) 499.

Google Scholar

[11] R.J.H. Voorhoeve, J.P. Remeika, L.E. Trimble, A.S. Cooper, F.J. Disalvo and P.K. Gallagher, J. Solid State Chem., 14 (1975) 395.

Google Scholar

[12] T. Kudo, T. Gejo and K. Yoshida, Environ. Sci. Tech., 12 (1978) 185.

Google Scholar

[13] H. Fujii, N. Mizuno and M. Misono, Chem. Lett., (1987) 2147.

Google Scholar

[14] T. Nitadori, T. Ichiki and M. Misono, Bull. Chem. Soc. Jpn., 61 (1988) 621.

Google Scholar

[15] K. Tabata and S. Kohiki, J. Mater. Sci., 23 (1988) 1056.

Google Scholar

[16] R.M. Hazen, Sci. Am., 6 (1988) 52.

Google Scholar

[17] L.G. Tejuca, J.L.G. Fierro and J.M.D. Tascon, Adv. Catal., 36 (1989) 237.

Google Scholar

[18] H. Tanaka and M. Misono, Current Opinion in Solid State and Mater. Sci, 5 (2001) 381.

Google Scholar

[19] H. Tanaka, H. Fujikawa and I. Takahashi, SAE Paper, 930251 (1993).

Google Scholar

[20] H. Tanaka, I. Takahashi, M. Kimura and H. Sobukawa, (Eds. ) Y. Izumi, H. Arai and M. Iwamoto, Science and Technology in Catalysts 1994, (Kodansya-Elsevier, Tokyo, 1995) 457.

Google Scholar

[21] H. Tanaka, H. Fujikawa and I. Takahashi, SAE Paper, 950256 (1995).

Google Scholar

[22] H. Tanaka, N. Mizuno and M. Misono, Appl. Catal. A: General, No. 244 (2003) p.371.

Google Scholar

[23] I. Tan, H. Tanaka, M. Uenishi, N. Kajita, M. Taniguchi, Y. Nishihata and J. Mizuki, SAE Paper, 2003-01-0812 (2003).

DOI: 10.4271/2003-01-0812

Google Scholar

[24] N. Sato. H. Tanaka, I. Tan, M. Uenishi, N. Kajita, M. Taniguchi, K. Narita and M. Kimura, SAE Paper, 2003-01-0813 (2003).

DOI: 10.4271/2003-01-0813

Google Scholar

[25] H. Tanaka, M. Taniguchi, N. Kajita, M. Uenishi, I. Tan, N. Sato, K. Narita and M. Kimura, Topics in Catalysis, Vol. 30/31 (2004) 389.

DOI: 10.1023/b:toca.0000029780.70319.36

Google Scholar

[26] Y. Nishihata, J. Mizuki, H. Tanaka, M. Uenishi and M. Kimura, J. Phys. Chem. Solids (in press).

Google Scholar

[27] M. Uenishi, M. Taniguchi, H. Tanaka, M. Kimura, Y. Nishihata, J. Mizuki and T. Kobayashi, Appl. Catal. B: Environ. (submitted).

Google Scholar

[28] H. Tanaka, I. Tan, M. Uenishi, M. Taniguchi, M. Kimura, Y. Nishihata and J. Mizuki, J. Alloy & Compounds (submitted).

Google Scholar