Fiber Bragg Grating Sensor/Piezoelectric Actuator Hybrid System for Damage Detection in Composite Laminates

Abstract:

Article Preview

In this paper, fiber Bragg grating (FBG) sensor and piezoelectric (PZT) actuator are used to develop a hybrid system for the evaluation of delamination in glass fiber-reinforced epoxy (GF/EP) composite laminates. The surface-bonded PZT actuator generates ultrasonic Lamb wave in the composite laminates, while the FBG sensor, which is embedded in the composite laminates, captures the Lamb wave signal. Wavelet analysis is introduced to extract signal spectrographic characteristics in the time-scale domain appropriately. Since the propagation characteristics of Lamb wave is altered by the existence of damage in the composite laminates, delamination information can be obtained from the received signal. With the assistance of a signal generation and an acquisition system, this methodology enables active sensing and non-destructive evaluation of delamination in the composite laminates. Experiments have been carried out with GF/EP composite beams to examine the feasibility of the proposed detection technique. The acquired and processed Lamb wave signals corresponding to different delamination sizes are compared.

Info:

Periodical:

Key Engineering Materials (Volumes 334-335)

Edited by:

J.K. Kim, D.Z. Wo, L.M. Zhou, H.T. Huang, K.T. Lau and M. Wang

Pages:

949-952

DOI:

10.4028/www.scientific.net/KEM.334-335.949

Citation:

P. M. Lam et al., "Fiber Bragg Grating Sensor/Piezoelectric Actuator Hybrid System for Damage Detection in Composite Laminates", Key Engineering Materials, Vols. 334-335, pp. 949-952, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.