Nano-Scaled Anatase Phase Titanium Oxide Converted from Ammonium Oxotrifluorotitanate Prepared by Aqueous Solution of Ammonium Hexafluorotitanate and Boric Acid

Article Preview

Abstract:

Nano-scaled particle of anatase phase titanium oxide was obtained from the conversion of ammonium oxotrifluorotitanate by thermal treatment in oxygen. The crystal of ammonium oxofluorotitanate was grown on glass at 40oC with an aqueous solution of ammonium hexafluorotitanate and boric acid. The titanium oxide was obtained from the conversion of ammonium oxotrifluorotitanate by thermal treatment in oxygen. The size of nano-scaled anatase titanium oxide increases with the temperature of thermal treatment, and the size distribution is from 10 to 30 nm corresponding to the thermal temperature from 300 to 1000oC. The photocatalytic activity of the nano-scaled titanium oxide was demonstrated by the photo-deposition of copper in the solution of copper nitrate and sodium oxalate. The photocatalytic activity for the sample treated thermally at 800 oC is 1.3 times higher than that of commercial P-25.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 336-338)

Pages:

2008-2011

Citation:

Online since:

April 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Yu, J. Yu, L. Zhang and W. Ho, J. Photochem. Photobiol. A-Chem. Vol. 148 (2002), pp.263-271.

Google Scholar

[2] I. Justicia, P. Ordejon, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Gattiston, R. Gerbasi and A. Figueras, Adv. Mater. Vol. 14 (2002), pp.1399-1402.

DOI: 10.1002/1521-4095(20021002)14:19<1399::aid-adma1399>3.0.co;2-c

Google Scholar

[3] J. Jie, F. Wang and M. Adachi, Mater. Lett. Vol. 58 (2004), pp.3915-3919.

Google Scholar

[4] C. H. Chen and E. M. Kelder, J. Schoonman, Thin Solid Films. Vol. 342 (1999), pp.35-41.

Google Scholar

[5] W. Ho, J. C. Yu and J. Yu, Langmuir. Vol. 21 (2005), pp.3486-3492.

Google Scholar

[6] A. Hattori and H. Tada, J. Sol-Gel Sci. Technol. Vol. 22 (2001), pp.47-52.

Google Scholar

[7] H. Yin, Y. Wada, T. Kitamura, T. Sumida, Y. Hasegawa and S. Yanagida, J. Mat. Chem. Vol. 12 (2002), pp.378-383.

Google Scholar

[8] I. Moriguchi, K. Sonoda, K. Matuso, S. Kagawa and T. Yasutake, Chem. Commun. Vol. 15 (2001), pp.1344-1345.

Google Scholar

[9] H. Nagayama, H. Honda and H. Kawahara, J. Electrochem. Soc. Vol. 135 (1988), p.2013-(2015).

Google Scholar

[10] R. H. Schmitt, H. L. Glove and R. D. Brown, J. Am. Chem. Soc. Vol. 82 (1960), pp.5292-5293.

Google Scholar

[11] N. M. Laptash, E. B. Merkulov and I. G. Maslennikova, Therm. Anal. Calorim. Vol. 63 (2001), pp.197-204.

Google Scholar

[12] P. Sriamornsak and N. Thirawong, Int. j. pharm. Vol. 267 (2003), pp.151-156.

Google Scholar

[13] S. K. Poznyak, V. V. Sviridov, A. I. Kulak and M. P. Samtsov, J. electroanal. chem. Vol. 340 (1992), pp.73-97.

Google Scholar

[14] C. H. Chen, E. M. Kelder and J. Schoonman, Thin Solid Films. Vol. 342 (1999), pp.35-41.

Google Scholar

[15] N. S. Foster, R. D. Noble and C. A. Koval, Environ. Sci. Technol. Vol. 27 (1993), pp.350-356.

Google Scholar

[16] D. Li, H. Haneda, S. Hishita, N. Ohashi and N. K. Labhsetwar, J. Fluorine Chem. Vol. 126 (2005), pp.69-77.

Google Scholar