High Temperature Thermoelectric Property of Sr-Filled Skutterudite SryCo4Sb12

Article Preview

Abstract:

Sr-filled skutterudite compounds SryCo4Sb12 (y=0-0.20) were synthesized by melting method. XRD and EPMA results revealed that the obtained samples are single skutterudite phase with homogeneous chemical composition. The lattice parameters increase linearly with increasing Sr content in the range of y=0-0.20. The thermal conductivity, electrical conductivity and Seebeck coefficient were measured in the temperature range of 300-850K. The measurement of Hall effect was performed by Van de Pauw method at room temperature. The obtained Sr-filled skutterudite exhibits n-type conduction. The absolute value of the Seebeck coefficient of SryCo4Sb12 decreases with the increase of Sr content. The electrical conductivity increases with the increase of Sr content. The lattice thermal conductivity of SryCo4Sb12 is significantly depressed as compared with unfilled CoSb3. The maximum dimensionless thermoelectric figure of merit is 0.7 for Sr0.20Co4Sb12 at 850K. Further optimization of chemical composition would improve the thermoelectric performance.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 336-338)

Pages:

842-845

Citation:

Online since:

April 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. C. Sales, D. Mandrus and R. K. Williams: Science Vol. 272 (1996), p.1325.

Google Scholar

[2] B. C. Sales, D. Mandrus, B. C. Chakoumakos, et al.: Phys. Rev. B Vol. 56 (1997), p.15081.

Google Scholar

[3] G P. Meisner, D. T. Morelli, S. Hu, J. Yang and C. Uher: Phys. Rev. Lett. Vol. 80 (1998), p.3551.

Google Scholar

[4] X. Tang, L. Chen, T. Goto and T. Hirai: J. Mater. Res. Vol. 16 (2001), p.837.

Google Scholar

[5] G. S. Nolas, M. Kaeser, R. T. Littleton IV, and T. M. Tritt: Appl. Phys. Lett. Vol. 77 (2000), p.1855.

Google Scholar

[6] J. Yang, D. T. Morelli, G. P. Meisner, et al.: Phys. Rev. B Vol. 67 (2003), pp.165207-1.

Google Scholar

[7] G.A. Lamberton, S. Bhattacharya, R. T. Littleton IV, et al: Appl. Phys. Lett. Vol. 80 (2002), p.598.

Google Scholar

[8] L. D. Chen, T. Kawahara, X. F. Tang, et al.: J. Appl. Phys. Vol. 90 (2001), p.1864.

Google Scholar

[9] J.S. Dyck, W. Chen, C. Uher, et al.: J. Appl. Phys. Vol. 91 (2002), p.3698.

Google Scholar

[10] M. Puyet, B. Lenoir, A. Dauscher, et al.: J. Appl. Phys. Vol. 95 (2004), p.4852.

Google Scholar

[11] M. Puyet, B. Lenoir, A. Dauscher, et al.: J. Solid state Chem. Vol. 177 (2004), p.2138.

Google Scholar

[12] B. C. Sales, B. C. Chakoumakos, and D. Mandrus: Phys. Rev. B Vol. 61 (2000), p.2475.

Google Scholar

[13] G.S. Nolas, C.A. Kendziora and H. Takizawa: J. Appl. Phys. Vol. 94 (2003), p.7440.

Google Scholar

[14] T. Caillat, A. Borshchevsky, and J. -P. Fleurial: J. Appl. Phys. Vol. 80 (1996), p.4442.

Google Scholar