Superplastic Properties and Microstructure of Friction Stir Welded Joints of Zn-22wt.%Al Alloy

Article Preview

Abstract:

Deformation mechanism of room-temperature superplasticity in Zn-22wt%Al alloy was investigated by the direct observation during deformation. It was revealed that the dominant deformation mechanism of room-temperature superplasticity was grain boundary sliding. Also, superplastic properties and microstructure of friction stir welded Zn-22wt.%Al alloy were investigated, where Friction Stir Welding (FSW) has received a great deal of attention as a new solid-state welding technique. A sound jointing material was obtained successfully, and extremely fine and equiaxed grains were created in the stir zone. In addition, it was indicated that superplastic forming of the FSWed Zn-22wt.%Al alloy could be feasible. However, the tensile strength and elongation of the joint at room temperature were lower than that of the base material.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 340-341)

Pages:

1417-1424

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. D. Sherby and J. Wadsworth: Prog. Mater. Sci Vol. 33 (1989), p.169.

Google Scholar

[2] T. G. Langdon: Metall. Trans Vol. 13A (1982), p.689.

Google Scholar

[3] T. Tanaka, K. Makii, H. Ueda, A. Kushibe, M. Kohzu and K. Higashi: Int. J. Mech. Sci. Vol. 45 (2003), p.1599.

Google Scholar

[4] T. Tanaka, M. Kohzu, Y. Takigawa, K. Higashi. Scripta Mater, Vol. 52 (2005), p.231.

Google Scholar

[5] T. Tanaka, K. Makii, A. Kushibe and K. Higashi: Mater. Trans. Vol. 43 (2002), p.2449.

Google Scholar

[6] T. Tanaka, K Makii, A. Kushibe, M. Kohzu and K. Higashi: Scripta. Mater Vol. 49 (2003), p.361.

DOI: 10.1016/s1359-6462(03)00328-2

Google Scholar

[7] T. Tanaka, K. Higashi. Mater. Trans. Vol. 45 (2004), p.1261.

Google Scholar

[8] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith, D. J. Dawes. Friction stir butt welding, International patent No. PCT/GB92/02203, GB Patent No. 9125978. 8 (1991), US Patent No. 5, 460, 317. (1995).

Google Scholar

[9] R. S. Mishra, Z. Y. Ma, Mater. Sci. Eng. R, Vol. 50 (2005), p.1.

Google Scholar

[10] G. Liu, L. E. Murr, C. -S. Nious, J. C. McClure, F. R. Vega, Scripta Mater. Vol. 37 (1997), p.355.

Google Scholar

[11] Y. G. Kim, H. Fujii, T. Tsumura, T. Komazaki, K. Nakata, Mater. Sci. Eng. A Vol. 415 (2006), p.250.

Google Scholar

[12] H. G. Salem, A. P. Reynolds, J. S. Lyons, Scripta Mater. Vol. 46 (2002), p.337.

Google Scholar

[13] K. V. Jata, S. L. Semiatin, Scripta Mater. Vol. 42 (2000), p.743.

Google Scholar

[14] Y. S. Sato, Y. Kurihara, S. H. C. Park, H. Kokawa, N. Tsuji, Scripta Mater. Vol. 50 (2004), p.57.

Google Scholar

[15] R. S. Mishra, M. W. Mahoney, S. X. McFadden N. A. Mara, A. K. Mukherjee, Scripta Mater. Vol. 42 (2000), p.163.

Google Scholar

[16] Z. Y. Ma, R. S. Mishra, M. W. Mahoney, Acta Mater. Vol. 50 (2002), p.4419.

Google Scholar

[17] R. S. Mishra, M. W. Mahoney, Mater. Sci. Forum Vol. 357-359 (2001), p.507.

Google Scholar

[18] A. Ball, M. M. Hatchison, Metal. Sci. J. Vol. 3 (1969), p.1.

Google Scholar

[19] O. D. Sherby, J. Wadsworth, Prog. Mater. Sci. Vol. 33 (1989), p.166.

Google Scholar

[20] T. G. Langdon, Metall. Trans. Vol. 3 (1972), p.797.

Google Scholar

[21] A. K. Mukherjee, Mater. Sci. Eng. Vol. 8 (1971), p.83.

Google Scholar

[22] T. G. Langdon, Mater. Sci. Eng. Vol. A174 (1994), p.225.

Google Scholar

[23] P. Shariat , R. B. Vastava, T. G. Langdon, Acta Metal. Vol. 30 (1982), p.285.

Google Scholar

[24] W. A. Rachinger, J. Inst. Metals Vol. 81 (1952), p.33.

Google Scholar

[25] Y. Ishida, A. W. Mullendore, N. J. Grant, Trans. AIME Vol. 233 (1965), p.204.

Google Scholar

[26] D. L. Holt, Trans. Metall. Soc. AIME Vol. 242 (1968), p.25.

Google Scholar

[27] I. I. Novikov, V. K. Portnoy, T. E. Terentieva, Acta Metal. Vol. 25 (1977), p.1139.

Google Scholar

[28] D. Lee, Acta Metal. Vol. 17 (1969), p.1057.

Google Scholar

[29] N. Furushiro, S. Hori, Scripta Metal. Vol. 13 (1979), p.653.

Google Scholar

[30] P. Shariat, R. B. Vastava, T. G. Langdon, Acta Metal. Vol. 30 (1982), p.285.

Google Scholar

[31] P. Kumar, C. Xu, T. G. Langdon, Mater. Sci. Eng. Vol. A410-411 (2005), p.447.

Google Scholar

[32] T. Chandra, J. J. Jonas, D. M. R. Taplin, J. Mater. Sci. Vol. 13 (1978), p.2380.

Google Scholar

[33] P. S. Pao, S. J. Gill, C. R. Feng, K. K. Sankaran, Scripta Mater. Vol. 45 (2001), p.605.

Google Scholar

[34] M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, W. H. Bingel, Metall. Mater. Trans. A Vol. 29 (1998), p. (1955).

DOI: 10.1007/s11661-998-0021-5

Google Scholar

[35] Y. S. Sato, S. H. C. Park, H. Kokawa, Metall. Mater. Trans. A Vol. 32 (2001), p.3023.

Google Scholar

[36] R. S. Mishra, Z. Y. Ma, Mater. Sci. Eng. R Vol. 50 (2005), p.1. Corresponding author: Tsutomu Tanaka E-mail: t_tanaka@tri. pref. osaka. jp.

Google Scholar