A Thermodynamically Consistent Eulerian Description of Finite Elastoplasticity

Abstract:

Article Preview

Recently it has been demonstrated that the classical Prandtl/Reuss theory based on the additive split of the deformation rate contrary to what is believed so far is possible to establish a consistent Eulerian rate formulation for finite elastoplasticity. Here, we attempt to place this Eulerian formulation on the thermodynamic grounds by extending it to a general case with thermal effects.

Info:

Periodical:

Key Engineering Materials (Volumes 340-341)

Edited by:

N. Ohno and T. Uehara

Pages:

787-794

Citation:

O. T. Bruhns, "A Thermodynamically Consistent Eulerian Description of Finite Elastoplasticity", Key Engineering Materials, Vols. 340-341, pp. 787-794, 2007

Online since:

June 2007

Authors:

Export:

Price:

$38.00

[1] A.E. Green and P.M. Naghdi, in: Irreversible aspects of continuum mechanics and transfer of physical characteristics in moving fluids, edited by H. Parkus and L.I. Sedov, pp.117-131, Springer, Berlin (1968).

DOI: https://doi.org/10.1007/978-3-7091-5581-3

[2] T. Lehmann, Arch. Mechanics Vol. 24, 975-989 (1972).

[3] J.P. Mandel, in: Foundations of Continuum Thermodynamics, edited by J.J. Domingos, et al., pp.283-304, The MacMillan Press, London (1974).

[4] H. Xiao, O.T. Bruhns and A. Meyers, Acta Mechanica, (in press), (2006).

[5] O.T. Bruhns, H. Xiao and A. Meyers, Int. J. Plasticity Vol. 21, 199-219 (2005).

[6] H. Xiao, O.T. Bruhns and A. Meyers, Proc. Roy. Soc. London Vol. A 456, 1865-1882 (2000).

[7] H. Xiao, O.T. Bruhns and A. Meyers, Acta Mechanica Vol. 124, 89-105 (1997).

[8] W. Prager, Quart. Appl. Math. Vol. 18, 403-407 (1960).

[9] H. Xiao, O.T. Bruhns and A. Meyers, Acta Mechanica Vol. 138, 31-50 (1999).

[10] J.C. Sim´o and Hughes, Computational Inelasticity, Springer, New York (1998).

[11] O.T. Bruhns, H. Xiao and A. Meyers, Int. J. Plasticity Vol. 19, 2007-2026 (2003).

[12] B.D. Coleman and W. Noll, 1963. Arch. Rat. Mech. Anal. Vol. 13, 167-178 (1963).