Effect of Sintering Condition, Sandblasting and Heat Treatment on Biaxial Flexure Strength of Zirconia

Article Preview

Abstract:

The effect of sintering condition, sandblasting and heat treatment on biaxial flexure strengths of the zirconia/ alumina nanocomposite stabilized with cerium oxide (Ce-TZP/Al2O3 nanocomposite, referred to NANOZR) was evaluated in comparison to that of yttria stabilized tetragonal zirconia polycrystals (Y-TZP). The disc-shaped specimens of NANOZR and Y-TZP were cut from the full-sintered or middle-sintered ones. The discs cut from the middle-sintered ones were finally sintered at the same temperature for the full-sintered one. These four kinds of disc were treated in various conditions combined with the sandblasting, the heat treatment, and the storage. The biaxial flexure strength of both middle- and full-sintered Y-TZP decreased with the autoclaving, whereas those of both NANOZR did not change with it. The monoclinic content of both the materials increased with the sandblasting and decreased with the heat treatment. Regardless of the sintering condition, the monoclinic content of the Y-TZP dramatically increased with the autoclaving and those of NANOZR remarkably increased with the sandblasting. Regardless of the different surface roughness, the biaxial flexure strengths of both materials strongly depended on the content of monoclinic ZrO2 on the surface.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 361-363)

Pages:

779-782

Citation:

Online since:

November 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Nawa, S. Nakamoto, T. Sekino and K. Niihara: Ceramic Intern. Vol. 24 (1998), p.497.

Google Scholar

[2] K. Tanaka, J. Tamura, K. Kawanabe, M. Nawa, M. Oka, M. Uchida, T. Kokubo and T. Nakamura: J. Biomed. Mater. Res. Vol. 63B (2002), p.262.

DOI: 10.1002/jbm.10182

Google Scholar

[3] S. Ban, M. Nawa, Y. Suehiro and H. Nakanishi: Key Engin. Mater. Vol. 309-311 (2006), p.1219.

Google Scholar

[4] S. Ban, H. Sato, Y. Suehiro, H. Nakanishi and M. Nawa: Key Engin. Mater. Vol. 330-332 (2007), p.353.

Google Scholar

[5] H. Sato, S. Ban, M. Nawa, Y. Suehiro and H. Nakanishi: Key Engin. Mater. Vol. 330-332 (2007), p.1263.

Google Scholar