Enhanced Up-Conversion Emission of Er3+-Doped Al2O3 Powders by Y3+ Codoping Prepared in a Non-Aqueous Sol-Gel Process

Abstract:

Article Preview

1 mol% Er3+- and 0–10 mol% Y3+-codoped Al2O3 powders is prepared in a non-aqueous sol–gel method. Two crystalline types of doped Al2O3,  and θ, are obtained for the 0–10 mol% Y3+-codoped Al2O3 powders sintered at the sintering temperature of 1000 °C by x-ray diffraction analysis. The green and red up-conversion emissions centered at about 550 and 670 nm increase with Y3+ codoping concentration, and the maximal intensity of both the green and red up-conversion emissions is obtained as about 100 and 10 times higher than that of the 1 mol% Er3+-doped Al2O3 powders, respectively. The enhancement in the green and red up-conversion emissions is ascribed to the improved dispersion of Er3+ in Er3+–Y3+-codoped Al2O3 powders.

Info:

Periodical:

Key Engineering Materials (Volumes 373-374)

Main Theme:

Edited by:

M.K. Lei, X.P. Zhu, K.W. Xu and B.S. Xu

Pages:

621-624

DOI:

10.4028/www.scientific.net/KEM.373-374.621

Citation:

H. Wang and M.K. Lei, "Enhanced Up-Conversion Emission of Er3+-Doped Al2O3 Powders by Y3+ Codoping Prepared in a Non-Aqueous Sol-Gel Process", Key Engineering Materials, Vols. 373-374, pp. 621-624, 2008

Online since:

March 2008

Authors:

Export:

Price:

$35.00

[1] A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad: J. Phys. Chem. B Vol. 106 (2002), p. (1909).

[2] L. Luo, X.X. Zhang, K.F. Li, K.W. Cheah, J.X. Shi, W.K. Wong, M.L. Gong: Adv. Mater. Vol. 16 (2004), p.1664.

[3] G.Y. Chen, Y.G. Zhang, G. Somesfalean, Z.G. Zhang, Q. Sun, F.P. Wang: Appl. Phys. Lett. Vol. 89 (2006), p.163105.

[4] M.J. Lohhead, K.L. Bray: Chem. Mater. Vol. 7 (1995), p.572.

[5] A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S.J.L. Ribeiro, Y. Messaddeq, A. Chiasera, M. Ferrari: J. Non-cryst. Solids Vol. 348 (2004), p.44.

DOI: 10.1016/j.jnoncrysol.2004.08.124

[6] V.C. Costa, M.J. Lohhead, K.L. Bray: Chem. Mater. Vol. 8 (1996), p.783.

[7] C.C. Ting, S.Y. Chen, W.F. Hsieh, H.Y. Lee: J. Appl. Phys. Vol. 90 (2001), p.5564.

[8] A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad: J. Phys. Chem. B Vol. 106 (2002), p. (1909).

[9] A. Patra, R. Reisfeld, H. Minti: Mater. Lett. Vol. 37 (1998), p.325.

[10] G.N. van den Hoven, E. Snoek, A. Polman: Appl. Phys. Lett. Vol. 62 (1993), p.3065.

[11] A. Suarez-Garcia, R. Serna, M.J. de Castro, C.N. Afonso, I. Vickridge, Appl. Phys. Lett. Vol. 84 (2004), p.2151.

[12] I.S. Molchan, N.V. Gaponedko, R. Kudrawies, J. Misiewicz, L. Bryja, G.E. Thompson, P. Skeldon: J. Alloys Compounds Vol. 341 (2002), p.251.

[13] T. Yang, H. Wang, M.K. Lei: Mater. Chem. Phys. Vol. 95 (2006), p.211.

[14] H. Wang, M.K. Lei: J. Inorganic Materials Vol. 21 (2006), p.803.

[15] A. J. Kenyon: Progress in Quantum Electronics Vol. 26 (2002), p.225.

In order to see related information, you need to Login.