Analysis of Optimal Clamping Schemes for Aero-Multi-Frame Monolithic Components

Abstract:

Article Preview

Many thin-walled aero-parts have complex structure, and high machining accuracy is required. But because of their poor rigidity, it is easy to bring machining deformation caused by the existence of the clamping residual stress, and influences machining accuracy of workpiece. At the present time it is a focal point how to reduce the deformation the machined surface. Present studies mainly focus on the influences of clamping points, clamping order and clamping force on residual stresses. It is few studied for clamping schemes how to influence the residual stresses and the fatigue resistance of the machined parts. To reflect the relationship between clamping schemes and residual stresses and fatigue resistance, finite element models with different clamping schemes were built and the clamping process was simulated. A conclusion is obtained that it is advisable to adopt even and symmetry distributed clamps and multi-point clamps to reduce the workpiece distortion of aero-multi-frame components due to the clamping. This study conclusion has been validated by the actual production.

Info:

Periodical:

Key Engineering Materials (Volumes 375-376)

Edited by:

Yingxue Yao, Xipeng Xu and Dunwen Zuo

Pages:

445-448

DOI:

10.4028/www.scientific.net/KEM.375-376.445

Citation:

H. Guo et al., "Analysis of Optimal Clamping Schemes for Aero-Multi-Frame Monolithic Components ", Key Engineering Materials, Vols. 375-376, pp. 445-448, 2008

Online since:

March 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.