Mathematical Modelling of the Crack Propagation in Wood Materials

Article Preview

Abstract:

In this paper we study the behaviour of a Mode I crack in a pre-stressed wood composite material. A mathematical model is associated to the mechanical problem. Starting from the boundary, constitutive and far field conditions we obtain the representation of the incremental displacement, stress and strain fields using two complex potentials. Using numerical analysis we determine the critical value, which causes crack propagation and the direction of crack propagation in a particular case of a Pine wood composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-182

Citation:

Online since:

October 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] FFP. Kollman, Cote WA., Principles of wood science and technology - I. Solid wood. (Springer, New York 1968).

Google Scholar

[2] J. Eberhardsteiner: Mechanisches Verhalte von Fichtenholz - Experimentelle Bestimmung der Biaxialen Festigkeitseigenschaften. (Springer, Vienna 2002).

Google Scholar

[3] K. Hofstetter, C.H. Hellmich, J. Eberhardsteiner: Eur. J Mech. A/Solids. Vol. 24 (2005), p.1030.

Google Scholar

[4] K. Wittel, G. Dill-Langer, B-H. Kröplin: Comput. Mater. Sci. Vol. 32 (2005), p.594.

Google Scholar

[5] P. Gillis: Wood Sci. & Techn. Vol. 6 (1972), p.138.

Google Scholar

[6] T. Sadowski: Mech. Materials Vol. 18 (1994), p.1.

Google Scholar

[7] T. Sadowski: Int. J. Damage Mech. Vol. 3 (1994), p.212.

Google Scholar

[8] T. Sadowski: Int. J. Damage Mech. Vol. 4 (1995), p.293.

Google Scholar

[9] T. Sadowski and S. Samborski: Com. Mat. Sci. Vol. 28 (2003), p.512.

Google Scholar

[10] T. Sadowski, E. Postek and C. Denis: Com. Mat. Sci. Vol. 39 (2007), p.230.

Google Scholar

[11] T. Sadowski and S. Samborski: Com. Mat. Sci. Vol. 43 (2008), p.75.

Google Scholar

[12] T. Sadowski and G. Golewski: Com. Mat. Sci. Vol. 43 (2008), p.119.

Google Scholar

[13] A.N. Guz, Mechanics of Brittle Fracture of Pre-stressed Materials, (Visha Sch., Kiev, 1983).

Google Scholar

[14] N.D. Cristescu, E.M. Craciun and E. Soós, Mechanics of Elastic Composites, (Chapman & Hall/CRC Press, Boca Raton, 2003).

Google Scholar

[15] S.G. Lekhnitski, Theory of elasticities of anisotropic body, (Holden Day, San Francisco, 1963).

Google Scholar

[16] G.C. Sih, A special theory of crack propagation, in: G.C. Sih (Ed-), Mechanics of Fracture, Vol. 1, pp. XXI-XLV Noordhoff, Leyden, (1973).

Google Scholar

[17] G.C. Sih and H. Leibowitz, Mathematical theories of brittle fracture, in: Fracture An Advanced Treatise Mathematical Fundamentals, edited by H. Leibowitz, (Academic Press, New York, 1968).

Google Scholar

[18] L.O. Jernkvist: Eng. Frac. Mech. Vol. 68 (2001), p.549.

Google Scholar

[19] E. Radi, D. Bigoni and E Capuani: Int. J. Solids Structures Vol. 39 (2002), p.3971.

Google Scholar