Five-Axis Flank Milling of Sculptured Surface with Barrel Cutters

Article Preview

Abstract:

A flank milling tool positioning method using a barrel cutter is proposed. An offset point is used as the first anchor point. Two rotary angles of the barrel cutter are adjusted to find the optimized tool position with the largest machining strip width. The result tool position calculated using the proposed method is gouge-free because the local interference avoidance method is integrated inside the tool positioning procedure. Error distribution beneath the barrel cutter is well estimated by virtual of the instant envelope curve of the cutter. The envelope curve is discretized into points. The distances between these points and the model surface are the machining errors beneath the cutter. The employment of the envelope curve also largely reduces the computational load of the algorithm. Finally, numerical implementation and simulation are performed to validate the feasibility of the method.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 407-408)

Pages:

292-297

Citation:

Online since:

February 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Vickers G W. Ball-mills versus end-mills for curved surface machining[J]. J. Engineering for Industry. 1989, 22(111): 22-26.

DOI: 10.1115/1.3188728

Google Scholar

[2] Warkentin A, Bedi S, Ismail F. Five-axis milling of spherical surfaces[J]. International Journal of Machine Tools and Manufacture. 1996, 36(2): 229-243.

DOI: 10.1016/0890-6955(95)98763-w

Google Scholar

[3] Rao N, Ismail F, Bedi S. Tool path planning for five-axis machining using the principal axis method[J]. International Journal of Machine Tools and Manufacture. 1997, 37(7): 1025-1040.

DOI: 10.1016/s0890-6955(96)00046-6

Google Scholar

[4] Warkentin A, Ismail F, Bedi S. Comparison between multi-point and other 5-axis tool positioning strategies[J]. International Journal of Machine Tools and Manufacture. 2000, 40(2): 185-208.

DOI: 10.1016/s0890-6955(99)00058-9

Google Scholar

[5] Warkentin A, Ismail F, Bedi S. Multi-point tool positioning strategy for 5-axis mashining of sculptured surfaces[J]. Computer Aided Geometric Design. 2000, 17(1): 83-100. a. Tool path computational result b. Simulation result Fig 6 Tool path generation of a b-surface.

DOI: 10.1016/s0167-8396(99)00040-0

Google Scholar

[6] Gray P, Bedi S, Ismail F. Rolling ball method for 5-axis surface machining[J]. Computer-Aided Design. 2003, 35(4): 347-357.

DOI: 10.1016/s0010-4485(02)00056-8

Google Scholar

[7] Gray P J, Ismail F, Bedi S. Graphics-assisted Rolling Ball Method for 5-axis surface machining[J]. Computer-Aided Design. 2004, 36(7): 653-663.

DOI: 10.1016/s0010-4485(03)00141-6

Google Scholar

[8] Li Z, Chen W. The analysis of correlative error in principal axis method for five-axis machining of sculptured surfaces[J]. International Journal of Machine Tools and Manufacture. 2005, 45(9): 1031-1036.

DOI: 10.1016/j.ijmachtools.2004.11.025

Google Scholar

[9] Gray P J, Bedi S, Ismail F. Arc-intersect method for 5-axis tool positioning[J]. Computer-Aided Design. 2005, 37(7): 663-674.

DOI: 10.1016/j.cad.2004.08.006

Google Scholar

[10] Sheltami K, Bedi S, Ismail F. Swept volumes of toroidal cutters using generating curves[J]. International Journal of Machine Tools and Manufacture. 1998, 38(7): 855-870.

DOI: 10.1016/s0890-6955(97)00053-9

Google Scholar

[11] Lee J J, Suh S H. Interference-free tool-path planning for flank milling of twisted ruled surfaces[J]. The International Journal of Advanced Manufacturing Technology. 1998, 14(11): 795-805.

DOI: 10.1007/bf01350764

Google Scholar

[12] T H K, Gey C, Rackow N. Flank milling optimization - the flamingo project[J]. Air & Space Europe. 2001, 3(3-4): 60-63.

DOI: 10.1016/s1290-0958(01)90058-9

Google Scholar

[13] Bedi S, Mann S, Menzel C. Flank milling with flat end milling cutters[J]. Computer-Aided Design. 2003, 35(3): 293-300.

DOI: 10.1016/s0010-4485(01)00213-5

Google Scholar

[14] Lartigue C, Duc E, Affouard A. Tool path deformation in 5-axis flank milling using envelope surface[J]. Computer-Aided Design. 2003, 35(4): 375-382.

DOI: 10.1016/s0010-4485(02)00058-1

Google Scholar

[15] Menzel C, Bedi S, Mann S. Triple tangent flank milling of ruled surfaces[J]. Computer-Aided Design. 2004, 36(3): 289-296.

DOI: 10.1016/s0010-4485(03)00118-0

Google Scholar

[16] Chih-hsing C, Jang-ting C. Five-axis flank machining of ruled surfaces with developable surface approximation[C]. (2005).

DOI: 10.1109/cad-cg.2005.41

Google Scholar

[17] Wu P H, Li Y W, Chu C H. Optimized tool path generation based on dynamic programming for five-axis flank milling of rule surface[J]. International Journal of Machine Tools and Manufacture. 2008, 48(11): 1224-1233.

DOI: 10.1016/j.ijmachtools.2008.03.009

Google Scholar

[18] Chih-hsing C J. Tool path planning for five-axis flank milling with developable surface approximation[J]. Int J Adv Manuf Technol. 2006, 29: 707-713.

DOI: 10.1007/s00170-005-2564-6

Google Scholar

[19] Liu X W. Five-axis NC cylindrical milling of sculptured surfaces[J]. Computer-Aided Design. 1995, 27(12): 887-894.

DOI: 10.1016/0010-4485(95)00005-4

Google Scholar

[20] Mann S, Bedi S. Generalization of the imprint method to general surfaces of revolution for NC machining[J]. Computer-Aided Design. 2002, 34(5): 373-378.

DOI: 10.1016/s0010-4485(01)00103-8

Google Scholar