Simulation of Gas and Spray Quenching during Extrusion of Aluminium Alloys

Article Preview

Abstract:

After the extrusion process most aluminium alloy profiles don´t satisfy the necessary strength requirements. An increase of strength can be obtained by age hardening of hardenable aluminium alloys. Age hardening includes the three steps of solution annealing, quenching and aging and is usually carried out in a separate process after extrusion. The integration of the sub-steps solution annealing and quenching in the extrusion process results in a marked reduction of the complete process chain. The applicability of this integration depends primarily on the quenching power of the cooling module and on the quench sensitivity of the aluminium alloy. Using the finite element method the non-steady-state process of quenching the profiles after leaving the extrusion press has been simulated. The boundary conditions for quenching are varied for a gas nozzle field and a spray cooling using heat transfer coefficients based on experiments. The simulation results support the design of gas nozzle fields or spray cooling for the extrusion process of different aluminium alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-64

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Sheppard: Extrusion of Aluminium Alloys, Kluwer Academic Publishers, Dordrecht, (1999).

Google Scholar

[2] D.D. Hall, I. Mudawar, R.E. Morgan, S.L. Ehlers: Validation of a Systematic Approach to Modeling Spray Quenching of Aluminum Alloy Extrusions, Composites, and Continuous Castings, in: JMEPEG vol. 6, 1997, pp.77-92.

DOI: 10.1007/s11665-997-0036-x

Google Scholar

[3] T.A. Deiters, I. Mudawar: Optimization of Spray quenching for Aluminum Extrusion, Forging, or Continuous Casting, in: J. Heat Treat. Vol. 7, 1989, pp.9-18.

DOI: 10.1007/bf02833183

Google Scholar

[4] C. Kramer, M. Becker: Device for Cooling Extruded Profiles, US Patent 6, 216, 485 B1, (2001).

Google Scholar

[5] D.H. Bratland, O. Grong, H. Shercliff, O.R. Myhr, S. Tjotta: Modelling of Precipitation Reactions in Industrial Processing, in: Acta mater. Vol. 45, 1997, pp.1-22.

DOI: 10.1016/s1359-6454(96)00100-0

Google Scholar

[6] C. Kramer: Strangabkühlung, in: J. Baumgarten: Strangpressen, DGM-Informationsges. -Verl., 1990, Oberursel, pp.119-129.

Google Scholar

[7] N. Jaervstraet, S. Tjotta: A Process Modell for On-Line Quenching of Aluminium Alloys, in: Mateallurgical and Materials Transactions B vol. 27B, 1996, pp.501-508.

Google Scholar

[8] C. Krause, E. Wulf, F. Nürnberger, F. -W. Bach: Wärmeübergangs- und Tropfencharakteristik für eine Spraykühlung im Temperaturbereich von 900-100 °C, in: Forsch Ingenieurwes vol. 72 (2008), pp.163-173.

DOI: 10.1007/s10010-008-0079-7

Google Scholar

[9] C. Krause: Randschichtvergüten verzahnter Bauteile mittels einer Wasser-Luft-Spraykühlung, Dissertation, Leibniz Universität Hannover (2008).

Google Scholar

[10] F. Puschmann: Experimentelle Untersuchung der Spraykühlung zur Qualitätsverbesserung durch definierte Einstellung des Wärmeübergangs, Dissertation, Otto-von-Guericke-Universität Magdeburg (2003).

Google Scholar

[11] J.P. Holman: Heat Transfer, McGraw-Hill, New York, (2002).

Google Scholar

[12] M. S Hamed: Evaluation of Heat Transfer Coefficients in Water Spray Quenching Systems, 20th Heat Treating Conf. Proc., 2000, ASM International, Vol. II, p.785.

Google Scholar

[13] B. Milkereit, O. Kessler, C. Schick: Recording of continuous cooling precipitation diagrams of aluminium alloys, in: Thermochimica Acta, Vol. 492, Elsevier Science (2009), pp.73-78.

DOI: 10.1016/j.tca.2009.01.027

Google Scholar

[14] C. Kammer: Aluminium-Taschenbuch, edition 15, Aluminium-Verlag (1998).

Google Scholar

[15] W. Hesse, Key to Aluminium, Aluminium-Verlag (2006).

Google Scholar

[16] B. Milkereit, C. Schick, O. Kessler: Continuous cooling precipitation diagrams of aluminiummagnesium-silicon alloys, in: J. Hirsch, B. Skrotzki, G. Gottstein (Eds), 11th International Conference on Aluminium Alloys, Deutsche Gesellschaft für Materialkunde e.V., WILEYVCH Weinheim, Aachen, Germany, (2008).

DOI: 10.1201/9781351045636-140000288

Google Scholar

[17] R. von Bargen, O. Kessler, H. -W. Zoch: Kontinuierliche Zeit-Ausscheidungs-Diagramme der Aluminiumlegierungen E� AW-7020 und E� AW-7050, in: HTM Z. Werkst. Wärmebeh. Fertigung 62 (2007) 6 pp.285-293.

DOI: 10.3139/105.100440

Google Scholar

[18] M. Narazaki, M. Kogawara, M. Qin, Y. Watanabe: Measurement and Database Construction of Heat Transfer Coefficient of Gas Quenching, edited by H. -W. Zoch, Th. Lübben, Proc. 2nd Int. Conf. on Distortion Engineering, 17-19. 09. 08, Bremen, Germany, 2008, pp.327-334.

Google Scholar