[1]
S.Y. Shchyogolev: Inverse problems of spectroturbidimetry of biological disperse systems: an overview. J. Biomed. Opt. 4 (1999), pp.490-503.
DOI: 10.1117/1.429954
Google Scholar
[2]
J. Vargas-Ubera, J.F. Aguilar, and D.M. Gale: Reconstruction of particle-size distributions from light-scattering patterns using three inversion methods. Appl. Opt. 46 (2007), pp.124-132.
DOI: 10.1364/ao.46.000124
Google Scholar
[3]
A García-Valenzuela, R. G. Barrera, E. Gutierrez-Reyes: Rigorous theoretical framework for particle sizing in turbid colloids using light refraction. Optics Express. 16 (24) (2008), 19741, 16 p.
DOI: 10.1364/oe.16.019741
Google Scholar
[4]
B.A. Brice and M. Halwer: A differential refractometer. Journal of the Optical Society of America. 41 (12) (1951), pp.1033-1037.
DOI: 10.1364/josa.41.001033
Google Scholar
[5]
M.A. Karabegov: Automatic Differential prism refractometer for monitoring process liquids. Measurement Techniques. 50 (6) (2007), pp.619-628.
DOI: 10.1007/s11018-007-0120-5
Google Scholar
[6]
R.G. Barrera, A. Reyes-Coronado, A. García-Valenzuela: &onlocal nature of the electrodynamic response of colloidal systems. Physical Review B. 75 (2007), 184202, 16 p.
DOI: 10.1103/physrevb.75.184202
Google Scholar
[7]
A. García-Valenzuela, E. G. Sandoval-Romero, C. Sánchez-Pérez: High resolution optical angle sensors: approaching the diffraction limit to the sensitivity. Applied Optics. 43 (22) (2004), pp.4311-4321.
DOI: 10.1364/ao.43.004311
Google Scholar
[8]
A. García-Valenzuela: Beam refraction and displacement in a differential refractometer with an absorbing sample. Opt. Lett. 34 (14) (2009), pp.2192-2194.
DOI: 10.1364/ol.34.002192
Google Scholar