The Growth and Characterization of the Cerium Contained Inorganic Halide Scintillators

Article Preview

Abstract:

A report on the crystal growth, luminescence and scintillation characteristics of two developed scintillators, CsCe2Cl7 and Cs2NaCeCl6 are presented. CsCe2Cl7 is a new scintillation material. These crystals were grown by the Czochralski pulling technique. The X-ray diffraction technique was used to verify the structure of crystals. Under the X-ray excitation emission, the CsCe2Cl7 showed a broad emission band in the wavelength range from 370 to 470 nm while the Cs2NaCeCl6 crystal showed a spectrum in the wavelength range from 370 to 440 nm. The energy resolutions (FWHM of peak position) for the 662 keV full energy peak of 5.5% and 8.3% were observed at room temperature for the CsCe2Cl7 and Cs2NaCeCl6 crystals, respectively. The scintillation decay time measurement curves showed that, CsCe2Cl7 crystal has a single exponential decay function with a decay time of 50 ns. The Cs2NaCeCl6 crystal exhibited three main decay time components, a short component with a decay time constant of 91 ns and 36% intensity, an intermediate component with a decay time constant of 601 ns and intensity 33%, followed by a long component with a 3.2 µs decay time constant and an intensity of 31% of the total light yield. On the basis of the scintillation results of these materials grown, it is believe that these scintillation crystals can find a place in medical imaging and radiation detection system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

275-282

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. A. Mares, M. Nikl, N. Solovieva, C. D'Ambrosio, F. de Notaristefani, K. Blazek, P. Maly, K. Nejezchleb, P. Fabeni, and G. P. Pazzi, Nucl. Instrum. Methods Phys. Res., 498, (2003), 312.

DOI: 10.1016/s0168-9002(02)01996-4

Google Scholar

[2] C. W. E. van Eijk , Nucl. Instrum. Methods Phys. Res. A, 460, (2001), 1.

Google Scholar

[3] B. C. Grabmaier, W. Rossner, and T. Berthold, Proc. of the Int. Conf. on Inorganic Scintillation materials and their applications, Delft, The Netherlands, (1995).

Google Scholar

[4] W. M. Higgins, J. Glodo, E. Van Loef, M. Klugerman, T. Gupta, L. Cirignano, P. Wong, and K. S. Shah, J. Crystal Growth. 287, (2006), 239.

DOI: 10.1016/j.jcrysgro.2005.11.020

Google Scholar

[5] K. S. Shah, J. Glodo, M. Klugerman, L. Cirignano, W. W. Moses, S. E. Derenzo, and M. J. Weber., Nucl. Instrum. Methods Phys. Res. A, 505, (2003), 76.

Google Scholar

[6] M. Moszynski, D. Wolski, T. Ludziejewski, M. Kapusta, A. Lempicki, C. Brecher, D. Wisniewski, and A. J. Wojtowicz, Nucl. Instrum. Methods Phys. Res. A, 385, (1997), 123.

Google Scholar

[7] Gul Rooh, Heedong Kang, H.J. Kim, H. Park, Sih-Hong Doh, and Sunghwan Kim, J. Crystal Growth. 311, (2008), 128.

Google Scholar

[8] Gul Rooh, Heedong Kang, H.J. Kim, H. Park, and Sunghwan Kim, J. Crystal Growth. 311, (2009), 2470.

Google Scholar

[9] H.J. Seifert, J. Therm. Anal. Cal., 76, (1986), 789.

Google Scholar

[10] R. Acevedo, V. Poblete, Powder Diffraction. 10 (4), (1995), 241.

Google Scholar

[11] Notice Korea Co.: /http: /www. rndkorea. co. kr.

Google Scholar

[12] H.J. Kim et al., IEEE Trans. Nucl. Sci. 55 (3), (2008), 1420.

Google Scholar

[13] Jinho Moon et al., J. Korean Phys. Soc. 49, (2006), 637.

Google Scholar

[14] C. W. E. van Eijk, P. Dorenbos, E. V. D. van Loef, K. Kr. Amerb, and H. U. G, udel, Radiat. Meas., 33(5), (2001), 521.

Google Scholar

[15] P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, IEEE Trans. �ucl. Sci., 41(4), (1994), 735.

Google Scholar

[16] Gul Rooh, Heedong Kang, H.J. Kim, H. Park, Sih-Hong Doh, IEEE Trans. Nucl. Sci. 55 (3), (2008), 1445.

Google Scholar

[17] J. C. van't Spijker, P. Dorenbos, C. W. E. van Eijk, M. S. Wickleder, H. U. Güdel, and P. A. Rodnyi, J. of Lum., 72-74, (1997), 786.

DOI: 10.1016/s0022-2313(96)00430-9

Google Scholar