Fabrication of Ultrafine Grained Copper Alloy by 3-Layers Accumulative Roll-Bonding Process

Article Preview

Abstract:

The 3-layers accumulative roll bonding process (ARB) has been attempted to increase the strength of copper alloy (Cu-0.02wt.%P) by refining grain size. The 3-layers accumulative roll bonding was conducted up to 7 cycles at room temperature without lubrication. Microstructural evolution of the copper alloy with the number of the 3-layers ARB cycles was investigated by optical microscopy (OM), transmission electron microscopy (TEM), and electron back scatter diffraction (EBSD). The average grain size has been refined from 20 μm before ARB to 170 nm after 7 cycles of 3-layers ARB. More than 70% of ultrafine grains formed by 3-layers ARB were composed of high angle grain boundaries. The average misorientation angle of ultrafine grains was 30.7 degrees in the center of the specimen. Tensile strength after 7 cycles of 3-layers ARB was 605 MPa, which is about 3.2 times higher than the initial value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-163

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev: Ultrafine Grained Materials II, edited by Y.T. Zhu, et at., TMS (2002), p.313.

Google Scholar

[2] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater., Vol. 47 (1999), p.579.

Google Scholar

[3] N. Tsuji, Y. Saito, h. Utsunomiya and S. tanigawa: Scripta Mater., Vol. 39 (1998), p.1221.

Google Scholar

[4] S.H. Lee, Y. Saito, T. Sakai and H. Utsunomiya: Mater. Sci. Eng., Vol. A325 (2002), p.228.

Google Scholar

[5] N. Tsuji, Y. Saito, H. Utsunomiya and T. Sakai: Scripta Mater., Vol. 40 (1999), p.795.

Google Scholar

[6] S.H. Lee, Y. Saito, K.T. Park and D.H. Shin: Mater. Trans., Vol. 43 (2002), p.2320.

Google Scholar

[7] Y. H. Jang, S.S. Kim, S.Z. Han, C.Y. Lim, C.J. Kim and M. Goto: Scripta Mater., Vol. 52 (2005), p.21.

Google Scholar

[8] S.H. lee, J. Cho, S.Z. Han and C.Y. Lim: Kor. J. Mater. Res., Vol. 15 (2005), p.21.

Google Scholar

[9] S.H. lee, J. Cho, C.H. lee, S.Z. Han and C.Y. Lim: Kor. J. Mater. Res., Vol. 15 (2005), p.555.

Google Scholar

[10] Y. H. Jang, S.S. Kim, S.H. Lee, S.Z. Han, C.Y. Lim, C.J. Kim and M. Goto: J. Kor. Inst. Met. & Mater., Vol. 44 (2006), p.670.

Google Scholar

[11] C.Y. Lim, S.Z. Han and S. H. Lee: Met. Mater. Inter., Vol. 12 (2006), p.225.

Google Scholar

[12] S.H. Lee, S.Z. Han and C.Y. Lim: Kor. J. Mater. Res., Vol. 17 (2007), p.361.

Google Scholar

[13] S.H. Lee, J. Cho, S.Z. Han and C.Y. Lim: Kor. J. Mater. Res., Vol. 15 (2005), p.240.

Google Scholar

[14] W. Truszkowski, J. Krol and B. Major: Metall. Trans., Vol. A11 (1980). P. 749.

Google Scholar

[15] T. Sakai, Y. Saito, K. Hirano and K. Kato: ISIJ Int., Vol. 28 (1988), p.1028.

Google Scholar

[16] Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res., Vol. 11 (1996), p.1880.

Google Scholar

[17] K. Oh-ishi, Z. Hotita, D.J. Smith, M. Furukawa, R.Z. Valiev, M. Nemoto, and T.G. Langdon: J. Mater. Res., Vol. 14 (1999), p.4200.

Google Scholar

[18] S.H. Lee, T. Sakai and D.H. Shin: Mater. Trans., Vol. 44, (2003), p.1382.

Google Scholar

[19] J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe: Acta Mater., Vol. 49 (2001), p.947.

Google Scholar

[20] F.J. Humphreys and M. Hatherly: Recrystallization and related Annealing Phenomena, Elsevier Science Ltd., England (1995).

Google Scholar