Fabrication of Ultrafine Grained Copper Alloy by 3-Layers Accumulative Roll-Bonding Process

Abstract:

Article Preview

The 3-layers accumulative roll bonding process (ARB) has been attempted to increase the strength of copper alloy (Cu-0.02wt.%P) by refining grain size. The 3-layers accumulative roll bonding was conducted up to 7 cycles at room temperature without lubrication. Microstructural evolution of the copper alloy with the number of the 3-layers ARB cycles was investigated by optical microscopy (OM), transmission electron microscopy (TEM), and electron back scatter diffraction (EBSD). The average grain size has been refined from 20 μm before ARB to 170 nm after 7 cycles of 3-layers ARB. More than 70% of ultrafine grains formed by 3-layers ARB were composed of high angle grain boundaries. The average misorientation angle of ultrafine grains was 30.7 degrees in the center of the specimen. Tensile strength after 7 cycles of 3-layers ARB was 605 MPa, which is about 3.2 times higher than the initial value.

Info:

Periodical:

Edited by:

Jun Wang,Philip Mathew, Xiaoping Li, Chuanzhen Huang and Hongtao Zhu

Pages:

158-163

DOI:

10.4028/www.scientific.net/KEM.443.158

Citation:

C. Y. Lim et al., "Fabrication of Ultrafine Grained Copper Alloy by 3-Layers Accumulative Roll-Bonding Process ", Key Engineering Materials, Vol. 443, pp. 158-163, 2010

Online since:

June 2010

Export:

Price:

$38.00

[1] R.Z. Valiev: Ultrafine Grained Materials II, edited by Y.T. Zhu, et at., TMS (2002), p.313.

[2] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater., Vol. 47 (1999), p.579.

[3] N. Tsuji, Y. Saito, h. Utsunomiya and S. tanigawa: Scripta Mater., Vol. 39 (1998), p.1221.

[4] S.H. Lee, Y. Saito, T. Sakai and H. Utsunomiya: Mater. Sci. Eng., Vol. A325 (2002), p.228.

[5] N. Tsuji, Y. Saito, H. Utsunomiya and T. Sakai: Scripta Mater., Vol. 40 (1999), p.795.

[6] S.H. Lee, Y. Saito, K.T. Park and D.H. Shin: Mater. Trans., Vol. 43 (2002), p.2320.

[7] Y. H. Jang, S.S. Kim, S.Z. Han, C.Y. Lim, C.J. Kim and M. Goto: Scripta Mater., Vol. 52 (2005), p.21.

[8] S.H. lee, J. Cho, S.Z. Han and C.Y. Lim: Kor. J. Mater. Res., Vol. 15 (2005), p.21.

[9] S.H. lee, J. Cho, C.H. lee, S.Z. Han and C.Y. Lim: Kor. J. Mater. Res., Vol. 15 (2005), p.555.

[10] Y. H. Jang, S.S. Kim, S.H. Lee, S.Z. Han, C.Y. Lim, C.J. Kim and M. Goto: J. Kor. Inst. Met. & Mater., Vol. 44 (2006), p.670.

[11] C.Y. Lim, S.Z. Han and S. H. Lee: Met. Mater. Inter., Vol. 12 (2006), p.225.

[12] S.H. Lee, S.Z. Han and C.Y. Lim: Kor. J. Mater. Res., Vol. 17 (2007), p.361.

[13] S.H. Lee, J. Cho, S.Z. Han and C.Y. Lim: Kor. J. Mater. Res., Vol. 15 (2005), p.240.

[14] W. Truszkowski, J. Krol and B. Major: Metall. Trans., Vol. A11 (1980). P. 749.

[15] T. Sakai, Y. Saito, K. Hirano and K. Kato: ISIJ Int., Vol. 28 (1988), p.1028.

[16] Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res., Vol. 11 (1996), p.1880.

[17] K. Oh-ishi, Z. Hotita, D.J. Smith, M. Furukawa, R.Z. Valiev, M. Nemoto, and T.G. Langdon: J. Mater. Res., Vol. 14 (1999), p.4200.

[18] S.H. Lee, T. Sakai and D.H. Shin: Mater. Trans., Vol. 44, (2003), p.1382.

[19] J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe: Acta Mater., Vol. 49 (2001), p.947.

[20] F.J. Humphreys and M. Hatherly: Recrystallization and related Annealing Phenomena, Elsevier Science Ltd., England (1995).

In order to see related information, you need to Login.