[1]
D.H. Chen, H. Nisitani, Eng. Fract. Mech., 45, (1993), 671-685.
Google Scholar
[2]
D.H. Chen, N. -A. Noda, K. Oda, S. Harada, in M.H. Aliabadi, H. Nisitani, D.J. Chartwright eds. Localized Damage II, Vol. 2: Computational Methods in Fracture Mechanics, Computational Mechanics Publications, (1992), pp.57-75.
Google Scholar
[3]
K. Oda, D.H. Chen, N. -A. Noda, S. Harada, ASME PVP-Vol. 304, Fatigue and Fracture Mechanics in Pressure Vesseles and Piping, (1995), pp.557-562.
Google Scholar
[4]
D.H. Chen, N. -A. Noda, K. Oda, S. Harada, Int. Jour. of Fract., 72, (1995), 343-358.
Google Scholar
[5]
H. Nisitani and D.H. Chen, The body force method (Taisekiryokuho in Japanese), Baifukan Publication, Tokyo (1987).
Google Scholar
[6]
J. Kennedy, R. Eberhart, Proc. of IEEE international Conf. on Neural Networks, Vol. IV, (1995), 1942-(1948).
Google Scholar
[4]
[6] [8] [10] [12] [14] 4 6 8 10 12 14.
Google Scholar
[4]
[6] [8] [10] [12] [14] 4 6 8 10 12 14.
Google Scholar
500 1000 Best fitness value Real cracks Estimated cracks.
Google Scholar
[4]
[6] [8] [10] [12] [14] 4 6 8 10 12 14.
Google Scholar
[4]
[6] [8] [10] [12] [14] 4 6 8 10 12 14 2000 4000 6000 8000 Best fitness value Real cracks Estimated cracks (a) Two small cracks (b) Three small cracks (c) Two large cracks Fig. 4 Example results of inverse problems for plural cracks.
DOI: 10.1016/b978-008043011-9/50042-9
Google Scholar
500 1000 0 200 400 Number of iterations.
Google Scholar
200 400 Number of iterations.
Google Scholar
[4]
[6] [8] [10] [12] [14] 4 6 8 10 12 14.
Google Scholar
[4]
[6] [8] [10] [12] [14] 4 6 8 10 12 14.
Google Scholar
4000 8000 12000 Best fitness value Real cracks Estimated cracks.
Google Scholar
500 1000 B e s t e v a lu a t io n v a lu e.
Google Scholar
200 400 Number of iterations 0. 0, 0. 1, 0. 0 === ∞ ∞ ∞ xy yy xx σ σ σ 0. 0, 0. 1, 0. 0 === ∞ ∞ ∞ xy yy xx σ σ σ 0. 0, 0. 1, 0. 0 === ∞ ∞ ∞ xy yy xx σ σ σ 000. 0, 999. 0, 000. 0 −= = −= ∞ ∞ ∞ xy yy xx σ σ σ 001. 0, 000. 1, 001. 0 −= = −= ∞ ∞ ∞ xy yy xx σ σ σ 000. 0, 999. 0, 000. 0 −= = −= ∞ ∞ ∞ xy yy xx σ σ σ.
DOI: 10.1016/0010-440x(70)90118-5
Google Scholar