Comparison of Calibrations Modeling for Determination of Protein of Mushroom Base on Middle Infrared Spectroscopy

Article Preview

Abstract:

Middle infrared spectroscopy combined with chemometrics was investigated for the fast determination of protein of mushroom. 140 samples (35 for each variety) were selected randomly for the calibration set, whereas, 40 samples for the validation set. After some spectrum preprocessing, linear modeling method (PLS) and nonlinear modeling LS-SVM were constructed. Different latent variables were used as inputs of LS-SVM. The optimal models were obtained with 8 LVs based on LS-SVM. The correlation coefficient,,root mean square error of prediction for the best prediction by LV-LS-SVM were 0.9275, 0.25961. The result indicated that middle infrared spectroscopy combined with LV-LS-SVM could be applied as a high precision and fast way for determination protein of mushroom.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 460-461)

Pages:

357-362

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Ikekawa, N. Uehara, Y. Maeda, M. Nakanishi and F. Fukuoka: Cancer Res, Vol. 29 (1969), p.734.

Google Scholar

[2] L. Yu, D.G. Fernig, J.A. Smith, J.D. Milton and J.M. Rhodes: Cancer Res, Vol. 53 (1993), p.4627.

Google Scholar

[3] B. Toth, K. Patil, H. Pyysalo, C. Stessman and P. Gannett: Cancer Res, Vol. 52 (1992), p.2279.

Google Scholar

[4] V. A. McGlone, R. B. Jordan, R. Seelye and P. J. Martinsen: Postharvest Biology and Technology, Vol. 26 (2002), p.191.

Google Scholar

[5] V. A. McGlone, D. G. Fraser, R. B. Jordan and R. Kunnemeyer: Journal of Near Infrared Spectroscopy, Vol. 11 (2003), p.323.

Google Scholar

[6] R. Lu: Transactions of the ASAE, Vol. 44 (2001), p.1265.

Google Scholar

[7] G. A. Konstantinos and M. G . Athanasia: Journal of Food Engineering, Vol. 63 (2004), p.199.

Google Scholar

[8] B. Wu, T. Abbott, D. Fishman, W. McCurray, G. Mor, K. Stone, D. Ward, K. Williams, H. Zhao: Bioinformatics, Vol. 19 (2003), p.1636.

Google Scholar

[9] M. Vannucci, N.J. Sha, J. P. Brown: Chemometrics and Intelligent Laboratory System, Vol. 77 (2005), p.139.

Google Scholar

[10] A.G. Pereira, A.H. Gomez, Y. He: Transactions of the CSAE, Vol. 19 (2003), p.7.

Google Scholar

[11] H.Q. Yang, Y. He, Y.M. Chen, P. Lin and D. Wu: Spectroscopy and Specral Analysis, Vol. 6 (2008), p.1232.

Google Scholar

[12] H.Q. Yang, J.Y. Wu, X.J. Chen and Y. He, in: A New Study on Variety Discrimination of Fragrant Mushrooms Using Genetic Algorithm, 7th World congress on intelligent control and automation, Vol. 23 (2008), p.8706.

DOI: 10.1109/wcica.2008.4594300

Google Scholar

[13] Y.L. Yan, L.L. Zhao, D.H. Han and S.M. Yang: The Foundation and Application of Near Infrared Spectroscopy Analysis(China Light Industry Press, Beijing 2005).

Google Scholar

[14] D. Wu, Y. He, S.J. Feng and Y.D. BAO: Journal of Infrared and Millimeter Waves, Vol. 27 (2008), p.180.

Google Scholar

[15] D. Wu, F . Cao, S.J. Feng and Y. He: Spectroscopy and Spectral Analysis, Vol. 5 (2008), p.1071.

Google Scholar

[16] L.J. Janik, S.T. Forrester and A. Rawson: chemometrics and intelligent laboratory systems, Vol. 2 (1997), p.179.

Google Scholar

[17] A. Savitzky, M.J.E. Golay: Anal. Chem, Vol. 36 (1965), p.1627.

Google Scholar

[18] P.A.G. Gorry: Anal. Chem, Vol. 62 (1992), p.570.

Google Scholar

[19] I.S. Helland, T. Nas and T. Isaksson: Chemom. Intell. Lab. Syst, Vol. 29 (1995), p.233.

Google Scholar

[20] R. Barnes, M. Dhanoa and J. Lister: Appl. Spectrosc, Vol. 43 (1998), p.772.

Google Scholar

[21] A. Barth, in: Infrared spectroscopy of proteins, Biochimica et Biophysica Acta, Vol. 67 (2007), p.1073.

Google Scholar

[22] F. Chauchard, R. Cogdill, S. Roussel, J.M. Roger and V. Bellon-Maurel: Chemom. Intell. Lab. Syst, Vol. 71 (2004), p.141.

Google Scholar