[1]
K. Van Breugel, Modelling of cement-based systems-the alchemy of cement chemistry, Cement an Concrete Research, Vol 34 (2004) p.1661.
DOI: 10.1016/j.cemconres.2004.02.016
Google Scholar
[2]
H. M Jennings and S. K Johnson, Simulation of microstructure development during the hydration of a cement compound, Journal of the American Ceramic Society, Vol. 69 , N°11 (1986) p.790.
DOI: 10.1111/j.1151-2916.1986.tb07361.x
Google Scholar
[3]
K. Maekawa, R. Chaube and T. Kishi, Modeling of Concrete Performance: Hydration, Microstructure Formation and Transport, E&FN SPON, UK, London, (1999).
Google Scholar
[4]
P. Navi and C. Pignat, Simulation of cement hydration and the connectivity of the capillary pore space, Advanced Cement Based Material, Vol 4, N° 2 (1996) p.58.
DOI: 10.1016/s1065-7355(96)90052-8
Google Scholar
[5]
F. Lin and C. Meyer, Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure, Cement and Concrete Research, Vol 39 (2009) p.255.
DOI: 10.1016/j.cemconres.2009.01.014
Google Scholar
[6]
T. Knudsen, Modeling hydration of Portland cement — the effect of particle size distribution, in: J.F. Young (Ed. ), in: Characterization and Performance Prediction of Cement and Concrete, United Engineering Trustees, Inc., New Hampshire, USA, (1982).
Google Scholar
[7]
A.A. Basma, S.A., Barakat and S. Al-Oraimi, Prediction of cement degree of hydrationusing artificial neural networks, ACI Materials Journal, Vol 96, N° 2 (1999) p.167.
Google Scholar
[8]
A.K. Schindler and K.J. Folliard, Heat of hydration models for cementitious materials, ACI Materials Journal, Vol. 102, N°1 (2005) p.24.
Google Scholar
[9]
D.P. Bentz, Influence of water-to-cement ratio on hydration kinetics: simple models based on spatial considerations, Cement and Concrete Research, Vol 36, N°2 (2006) p.238.
DOI: 10.1016/j.cemconres.2005.04.014
Google Scholar
[10]
S Chandra and Y. Ohama, in: Polymers in Concrete, CRC, Boca Raton, (1994).
Google Scholar
[11]
D. A Silva and P.J.M. Monteiro, ESEM analysis of polymeric film in EVA-modified cement paste, Cement and Concrete Research, Vol 35 (2005) p. (2047).
DOI: 10.1016/j.cemconres.2004.10.037
Google Scholar
[12]
R. Wang, X-G Li. and Wang P-M, Influence of polymer on cement hydration in SBR-modified cement pastes, Cement and Concrete Research, Vol. 36 (2006) p.1744.
DOI: 10.1016/j.cemconres.2006.05.020
Google Scholar
[13]
K.L. Scrivener and R J Kirkpatrick, Innovation in use and research on cementitious material, Cement and Concrete Research, Vol. 38 (2008) p.128.
DOI: 10.1016/j.cemconres.2007.09.025
Google Scholar
[14]
D.R. Paul and L. M Roberson, Polymer nanotechnology: Nanocomposites, Polymer, Vol. 49 (2008) p.3187.
Google Scholar
[15]
K. E. Strawhecker and E. Manias, Structure and Properties of Poly(vinyl alcohol)/Na+ Montmorillonite Nanocomposites Chemical Materials, Vol. 12 (2000) p.2943.
DOI: 10.1021/cm000506g
Google Scholar
[16]
N Ogata, S Kawakage and T Ogihara, Poly(vinyl alcohol)-clay and Poly(ethylene oxide)-clay Blends Prepared Using Water as Solvent, Journal of Applied Polymer Science, Vol. 66 (1997) p.573.
DOI: 10.1002/(sici)1097-4628(19971017)66:3<573::aid-app19>3.0.co;2-w
Google Scholar
[17]
L Ludueña, V. Bálzamo, A. Vázquez and V.A. Alvarez, Evaluation of Methods for Stiffness Predictions of Polymer Based nanocomposites: Theoretical Background and Examples of Applications (PCL-clay nanocomposites). in Nanomaterials: Properties, Preparation and Processes by Silva, Cabral and Cabral V. Editorial: Nova Publishers; NY, USAISBN: 978-1-60876-627-7 . In press (2009).
Google Scholar
[18]
J. P. Pascault, H. Sautereau, J. Verdu and R.J.J. Williams, in: Thermosetting Polymers, Marcel Dekker Inc., (2002).
DOI: 10.1201/9780203908402
Google Scholar
[19]
L. D'Aloiaa and G. Chanvillard Determining the 'apparent', activation energy of concrete Ea—numerical simulations of the heat of hydration of cement, Cement and Concrete Research, Vol. 32 (2002) p.1277.
DOI: 10.1016/s0008-8846(02)00791-3
Google Scholar
[20]
H. Kada-Benameur, E. Wirquin and B. Duthoit, Determination of apparent activation energy of concrete by isothermal calorimetry, Cement and Concrete Research, Vol. 30 (2000) p.301.
DOI: 10.1016/s0008-8846(99)00250-1
Google Scholar
[21]
H.M. Jennings, B. J Dalgleish and P.L. Pratt, Morphological Development of Hydrating Tricalcium Silicate as Examined by Electron Microscope Techniques, Journal of the American Ceramic Society, Vol. 64 (1981) p.567.
DOI: 10.1111/j.1151-2916.1981.tb10219.x
Google Scholar
[22]
J-M Thomasin, Ch Pagnoulle, G Caldarella, A Germain and R Jérome, Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuell cell application, Journal of Membrane Science, Vol. 270 (2006) p.50.
DOI: 10.1016/j.memsci.2005.06.041
Google Scholar
[23]
K Maekawa, T. Ishida and T. Kishi, Multi-scale Modeling of Concrete Performance Integrated Material and Structural Mechanics. Journal of Advanced Concrete Technology, Vol. 1 N°2 (2002) p.91.
DOI: 10.3151/jact.1.91
Google Scholar
[24]
X-Y Wang and H-S Lee, Modeling the hydration of concrete incorporating fly ash or slag, Cement and Concrete Research, in press (2010).
DOI: 10.1016/j.cemconres.2010.03.001
Google Scholar
[25]
A Fernández-Jiménez. and F. Puertas, Alkali-activated slag cements: Kinetic studies Cement and Concrete Research, Vol. 27, N°3 (1997) p.359.
DOI: 10.1016/s0008-8846(97)00040-9
Google Scholar
[26]
K. van Breugel and Y. Guang, Analyses of Hydration Processes and Microstructural Development of Ultra High Performance Concrete through Numerical Simulation, Proc. Int. Conf. On Ultra High Perfor-mance Concrete, Ed. M. Schmidt, (2004) p.253.
Google Scholar
[27]
P. Freiesleben-Hansen and E. J Pedersen, in: Curing of Concrete Structures, CEB Information Bulletin, Vol. 166 (1985) 42 p.
Google Scholar
[28]
AK Schindler and K. J Folliard, Heat of hydration models for cementitious materials, ACI Materials Journal, Vol. 102, N°1 (2005) p.24.
Google Scholar
[29]
E. Knapen and D. Van Gemert, Cement hydration and microstructure formation in the presence of water-soluble polymers, Cement Concrete Research, Vol. 39 (2009) p.6.
DOI: 10.1016/j.cemconres.2008.10.003
Google Scholar
[30]
M. Cervera, R. Faria, J. Oliver and T. Prato, Numerical modeling of concrete curing, regarding hydration and temperature phenomena, Computers and Structures, Vol. 80, N°18–19 (2002) p.1511.
DOI: 10.1016/s0045-7949(02)00104-9
Google Scholar
[31]
S. Sonawane, P. Chandhan, S. Ghodkes, S. Phadtare and S. Meshran, Ultrasonic assisted adsorption of basic dye onto organically modified bentonite (nanoclay), Journal of Scientific and Industrial Research, Vol. 68 (2009) p.162.
Google Scholar