Process Design for the Manufacturing of Magnetic Pulse Welded Joints

Article Preview

Abstract:

When manufacturing joints of dissimilar materials thermal technologies as welding reach their limits. Impact welding by electromagnetic forming is a promising alternative because undesired heating of the parts and related disadvantages are avoided. In this process impact parameters need to be adjusted to each specific joining task, but cannot be settled directly. Thus, a two-step methodology is suggested for the process design: First the influence of the impact parameters and the surface preparation on the joint properties is investigated using a model experiment. Joint properties are characterized by metallographic investigations. Parallel to this, the influence of the adjustable process parameters and the equipment on the workpiece acceleration and the impact properties is analyzed. Then the results of both investigation paths are combined and conclusions regarding a target-oriented adjusting of the impact parameters via the process parameters are drawn. In the paper first results considering the model experiment and the analysis of the electromagnetic expansion process are presented and joints manufactured by electromagnetic expansion are characterized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-250

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Lesemann, C. Sahr, S. Hart and R. Taylor, in: Proceedings of the 7th LS-DYNA Anwenderforum, Bamberg, (2008).

Google Scholar

[2] http: /www. boeing. com/news/releases/2003/q2/nr_030612g. html (displayed on 19. 11. 2010).

Google Scholar

[3] http: /www. audi. de/ (displayed on 19. 11. 2010).

Google Scholar

[4] M. Koschlig, M. Veehmayer and D. Raabe, in: Proceedings of the 3rd International Conference on High Speed Forming – ICHSF 2008, Dortmund, pp.23-32, (2008).

Google Scholar

[5] C. Beerwald, Fundamentals for Processing, Dimensioning and Design of Electromagnetic Forming (in German), PhD. -Thesis, Dortmund, (2004).

Google Scholar

[6] G. W. Harvey and D. F. Brower, U.S. Patent 2 976 907, (1961).

Google Scholar

[7] H. Bühler and E. von Finckenstein, in: Werkstatt und Betrieb 101(4), pp.209-215, (1968).

Google Scholar

[8] C. Weddeling, S. Woodward, M. Marré, J. Nellesen, V. Psyk, A.E. Tekkaya and W. Tillmann, doi: 10. 1016/j. jmatprotec. 2010. 07. 020, (2010).

Google Scholar

[9] D. N. Lysenko, V. V. Ermolaev and A. A. Dudin, U.S. Patent 3, 520, 049, (1970).

Google Scholar

[10] L. Rafailoff and V. Schmidt, Industrie-Anzeiger, vol. 97, no. 5, pp.79-82, (1975).

Google Scholar

[11] A. Ben-Artzy, A. Stern, N. Frage, V. Shribman and O. Sadot, International Journal of Impact Engineering, vol. 37, pp.397-404, (2010).

DOI: 10.1016/j.ijimpeng.2009.07.008

Google Scholar

[12] P V. Psyk, G. Gershteyn, O. K. Demir, A. Brosius, A. E. Tekkaya, M. Schaper and Fr. -W. Bach, in: Proceedings of the 3rd International Conference on High Speed Forming – ICHSF 2008, Dortmund, pp.181-190, (2008).

Google Scholar

[13] http: /femm. info (displayed on 23. 11. 2010).

Google Scholar

[14] D. Bauer, Bänder Bleche Rohre 6, pp.575-577, (1965).

Google Scholar

[15] G. S. Daehn, Y. Zhang, S. Golowin, K. Banik, A. Vivek, J. R. Johnson, G. K. Fenton, I. Hinchi and P. L'Eplattenier, in: Proceedings of the 3rd International Conference on High Speed Forming – ICHSF 2008, Dortmund, pp.35-44.

Google Scholar

[16] M. Marré, C. Beerwald, W. Homberg and M. Kleiner, in: Proceedings of the 11. Paderborner Fügesymposium, Paderborn, pp.162-172, (2004).

Google Scholar

[17] S. D. Kore, P. P. Date, S. V. Kulkarni, International Journal of Impact Engineering, 2006, doi: 10. 1016/j. ijimpeng. 2006. 08. 006.

Google Scholar