Numerical Prediction of Damage Evolution in Sheet Metal Forming Processes with Nonlinear and Complex Strain Paths

Article Preview

Abstract:

Various thin-walled parts with fairly complex shapes are produced from sheet metals such as automotive panels and other structural parts. In these processes, damage and fracture may be observed on the work piece, and formability plays a fundamental role. Therefore, determination of forming limits and prediction of rupture modes in these operations is very important for process design engineers. In this paper, first, based on plane stress elasto-plasticity and finite strain theories a fully coupled elastic-plastic-damage model is used to predict damage evolution in one sheet metal forming process with nonlinear and complex strain paths. As the plane stress algorithm is valid for thin sheet metals and finite strain theory is recommended for large deformations or rotations, the model is able to quickly predict both deformation and damage behaviour of the parts with nonlinear and complex strain paths. The numerical simulations are compared with experimental tests. Comparison of the numerical and experimental results shows that the proposed damage model is accurate for various forming conditions. Hence, it is concluded that finite element method combined with continuum damage mechanics, can be used as a reliable and rapid tool to predict damage evolution in sheet metal forming processes with nonlinear and complex strain paths.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

653-658

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Lemaitre, A Course on Damage Mechanics, Springer Verlag, Berlin, (1992).

Google Scholar

[2] Pedro Teixeira, A.D. Santos, F.M. Andrade Pires, J.M.A. C´esar de S´a., Journal of Materials Processing Technology. 177 (2006), 278–281.

Google Scholar

[3] J.M.A. C´esar de S´a, P.M.A. Areias, Cai Zheng., Comput. Methods Appl. Mech. Engrg. 195 (2006), 6646–6660.

Google Scholar

[4] J.P. Fan, C.Y. Tang, C.P. Tsui, L.C. Chan, T.C. Lee., International Journal of Machine Tools & Manufacture 46 (2006) 1035–1044.

Google Scholar

[5] P.I. Kattan, G.Z. Voyiadjis, Damage mechanics with finite elements, Springer. (2001).

Google Scholar

[6] J. Lemaitre, R. Desmorat, Engineering Damage Mechanics, Springer-Verlag. (2005).

Google Scholar

[7] F. Haji Aboutalebi, M. Farzin and M. Poursina, International Journal of Advanced Manufacturing Technology, (2010) DOI 10. 1007/S00170-010-2831-Z.

Google Scholar