Finding the Best Machine for SPIF Operations - a Brief Discussion

Article Preview

Abstract:

Single Point Incremental Forming (SPIF) given its easy implementation and absence of dedicated tooling is a promising manufacturing technology concerning the production of customized products, low batches or prototyping of ready-to-use parts. The range of application is wide, covering many materials and virtually unlimited geometries. Indeed, current process boundaries are more related to machine limitations than to the procedure itself. In this paper, research is carried out on the state-of-the-art of existing SPIF machine technology, in order to determine an appropriate configuration for an incremental forming equipment that overcomes such limitations. A comparative analysis is carried out to evaluate the different types of currently used equipment: adapted milling machines, serial robots and purpose built machines. Comparison parameters include among many others the maximum payload, tool path flexibility, stiffness and overall cost of the machine, based on information gathered on publications mainly from the last decade. Alternatively, other solutions used for different technological processes and assembly operations, such as precision positioning, are also taken into account. Based on the comparison of all solutions, and on the objectives of the current project carried out at the University of Aveiro, it is concluded that an equipment with parallel kinematics, driven by hydraulic servo-cylinders, could be the best choice to achieve the established goals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

861-868

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Duflou J.R., Szekeres A., VanHerck A., J. Adv. Mat. Res., Vols. 6-8 (2005), p.441 – 448.

Google Scholar

[2] Rauch M., Hascoet J.Y., Hamann J.C., Plennel Y., Comp. -Aid. Des., Vol. 41 (2009), pp.877-88.

Google Scholar

[3] Jackson K., Allwood J., Landert M., J. Mat. Proc. Tech., Vol 204 (2008), p.290–303.

Google Scholar

[4] Durante M., Formisano A., Langella. A., Minutolo F., J. Mat. Proc. Tech., Vol 209 (2009), p.4621–4626.

Google Scholar

[5] Bouffioux C., Eyckens P., Henrard C., Aerens R., Van Bael A., Sol H., Duflou J. R., Habraken A.M., Proceedings of IDDRG Conference, Gyor (2007).

DOI: 10.1007/s12289-008-0183-0

Google Scholar

[6] Allwood J. M., Houghton N. E., Jackson K. P., 11th Conference on Sheet Metal, pp.471-478.

Google Scholar

[7] Decultot N., Velay V., Robert L., Bernhart G., Massoni E., Int. J. Mat. Form., Vol. 1 (2008), pp.1151-1154.

DOI: 10.1007/s12289-008-0184-z

Google Scholar

[8] Duflou J.R., Callebaut B., Verbert J., De Baerdemaeker H., Annals of the CIRP, Vol. 56 (2007) pp.273-276.

DOI: 10.1016/j.cirp.2007.05.063

Google Scholar

[9] Martins P., Bay N., Silva M., Annals of the CIRP, Vol 57 (2008), p.247–252.

Google Scholar

[10] Franzena V., Kwiatkowski L., Martins P., Tekkaya A., J. Mat. Proc. Tech., Vol 209 (2009), p.462–469.

Google Scholar

[11] Silva M.B., Skjoedt M., Atkins A.G., Bay N., Martins P., J Str. An. Eng. Des. Vol. 43(2008), p.15–35.

Google Scholar

[12] Ambrogio G., De Napoli L., Filice L., Gagliardi F., Muzzupappa M., J. Mat. Proc. Tech., Vol. 162 (2005), pp.156-162.

DOI: 10.1016/j.jmatprotec.2005.02.148

Google Scholar

[13] Jeswiet J., Micari F., Hirt G., Bramley A., Duflou J., Allwood J., Annals of the CIRP, Vol 54 Issue 2, (2005) pp.88-114.

DOI: 10.1016/s0007-8506(07)60021-3

Google Scholar

[14] Ham M., Jeswiet J., Annals of the CIRP Vol. 56(2007), pp.277-280.

Google Scholar

[15] Micari F., Ambrogio G., Filice L., J. Mat. Proc. Tech., Vol. 191 (2007), p.390–395.

Google Scholar

[16] Aerens R., Eyckens P., Van Bael A., Duflou J. R., J Adv Manuf Tech, Vol. 46, pp.969-982.

DOI: 10.1007/s00170-009-2160-2

Google Scholar

[17] Hussain G., Gao L., J. Mach. T. Manuf., Vol 47 (2007), p.419–435.

Google Scholar

[18] Dejardin S., Thibaud S., Gelin J.C., Michel G., J. Mat. Proc. Tech., Vol. 210 (2010), pp.363-369.

Google Scholar

[19] Jeswiet J., Duflou J., Szekeres A., Levebre P., J. Adv. Mat. Res., Vol. 6-8 (2005), pp.487-492.

Google Scholar

[20] Obikawa T., Satou S., Hakutani T., J. Mach. T. Manuf., Vol. 49 (2009), p.906–915.

Google Scholar

[21] Jeswiet J., Hagan E., Proceedings of Shemet, April 2001, pp.165-170.

Google Scholar

[22] Schafer T., Schraft R.D., 10th European Forum on Rapid Prototyping - AFPR (2004).

Google Scholar

[23] Meier H., Dewald O., Zhang J., Steel Research, Issue 2005, Dusseldorf.

Google Scholar

[24] Lamminen L., Tuominen T., Kivivuori S., Proceedings of 3rd International Conference on Advanced Materials Processing (ICAMP-3), Finland 2005, p.331.

Google Scholar

[25] Duflou J., Tunçkol Y., Szekeres A., Vanherck P., J. Mat. Proc. Tech., Vol. 189 (2007), p.65–72.

Google Scholar

[26] Ben-Horin R., Shoham M., Djerassi S., Proceedings of 1999 ASME DETCCEC Conference.

Google Scholar

[27] www. amino-ca. com.

Google Scholar