Modeling and Simulation of Grain Growth of Ceramic Material in Sintering Process

Article Preview

Abstract:

The grain growth in the sintering process of ceramic materials has an important impact on the ceramic materials performance. In this paper, a grain growth simulation model considering the requirement of heat and space is established. The Al2O3-based ceramic materials are preparation, and the model is verified by the Al2O3-based ceramic materials. The simulated results of the grain growth by the model are very close to the grain growth of Al2O3-based ceramic materials. The model can be used in the study of grain growth in ceramic materials sintering process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-258

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Raabe: Computational Materials Science. (Chemical Industry Press, China 2002).

Google Scholar

[2] A. B. Bortz, M. H. Kalos and J. L. Lebowitz: J. Comput Phys. Vol. 17 (1975), pp.10-18.

Google Scholar

[3] Braginskym, V. Tikare, E. Olevsky: International Journal of Solid and Structures Vol. 42(2004), pp.621-636.

Google Scholar

[4] L. Nurminen, A. Kuronen, K. Kaski: Phys Rev B Vol. 63(2001), pp.35407-35414.

Google Scholar

[5] C. C. Battaile, D. J. Srolovitz, J. E. Butler: J Appl Phys Vol. 82(1997), pp.6293-6300.

Google Scholar

[6] B. Fang: Simulation Study on Mierostrueture Evolution of Ceramie Tool Materials during Fabrication (Shandong University, 2007).

Google Scholar

[7] D. Raabe, Hantcherlil: Computational Materials Science Vol. 34(2005), pp.299-313.

Google Scholar

[8] H. L. Ding, Y. Z. He, L. F. Liu, W. L. Ding: Journal of Crystal Growth Vol. 293(2006), pp.489-497.

Google Scholar

[9] Y. Z. He, H. L. Ding, L. F. Liu, K. Shin: Mater Sci Eng A Vol. 429(2006), pp.236-246.

Google Scholar

[10] H. W. Hesselbarth, I. R. Göbel: Acta Metallurgica Et Materialia, Vol. 39(1991), pp.2135-2143.

DOI: 10.1016/0956-7151(91)90183-2

Google Scholar

[11] Y. Liu, T. Baudin, R. Penelle: Scripta Materialia Vol. 34(1996), pp.1679-1683.

DOI: 10.1016/1359-6462(96)00055-3

Google Scholar

[12] J. Geiger, A. RoÓSz, P. BarkÓCzy: Acta Materialia Vol. 49 (2001), p.623.

Google Scholar

[13] S. Raghavan, S. S. Sahay: Materials Science and Engineering A Vol. 203(2007), pp.445-446.

Google Scholar

[14] I. Q. Chen. Ann. Rev. Mater. Res, Vol. 32 (2002) p.113.

Google Scholar

[15] D. Fan: Computer Simulation of Microstructural Evolution in Multiphase Materials Using a Diffuse-Interface Field Model (Pennsylvania State University, 1996).

Google Scholar

[16] M.G. Mecozzi;J. Eiken;M. Apel and J. Sietsma: Computational Materials Science Vol. 50(2011), pp.1846-1853.

DOI: 10.1016/j.commatsci.2011.01.028

Google Scholar

[17] S. Tang, J. C. Wang, G. C. Yang, Y. H. Zhou: Intermetallics Vol. 19(2011), pp.229-233.

Google Scholar

[18] P. C. Millett, A. El-Azab, S. Rokkam, M. Tonks, D. Wolf: Computational Materials Science Vol. 50(2011), pp.949-959.

DOI: 10.1016/j.commatsci.2010.10.034

Google Scholar

[19] L. Nurminen, A. Kuronen and K. Kaski: Phys. Rev. B Vol. 63(2001), pp.35407-35414.

Google Scholar

[20] Z. G. Han: Methods and Applications of Mathematical Modeling (Higher Education Press, China 2005).

Google Scholar

[21] Y. J. Tan, Z. J. Cai: Mathematical Model (Fudan University Press, China 2005).

Google Scholar

[22] X. Z. Wu, X. H. Wu: Stochastic Model and Computer Simulation (Electronic Industry Press, China 1990).

Google Scholar