Key Parameters Influencing Microcellular Polystyrene Cell Morphology Blowing with Supercritical CO2

Article Preview

Abstract:

Polystyrene microcellular foams blowing with supercritical CO2 were prepared with a novel polymer foam processing simulator. Key parameters influencing Polystyrene cell morphology were investigated. The effect of processing temperature and saturation pressure on cell morphology was observed by scanning electron microscope and the average cell diameter and cell size distribution was calculated. The results show that the cell density decrease and cell size increase with the increase of foaming temperature. The cell density increase and cell size decrease with the increase of saturation pressure. And the cell size distribution shows a narrow distribution at lower foaming temperature and higher saturation pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-242

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Sato, M. Yurugi, K. Fujiwara. Solubilities of carbon dioxideand nitrogen in polystyrene under high temperature and pressure. Fluid Phase Equilib. 125 (1996)129-138.

DOI: 10.1016/s0378-3812(96)03094-4

Google Scholar

[2] Y. Sato, K. Fujiwara, T. Takikawa. Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene,high-density polyethylene,and polystyrene under high pressure and temperature. Fluid Phase Equilib. 162(1999)261-276.

DOI: 10.1016/s0378-3812(99)00217-4

Google Scholar

[3] L. Chen, X. Wang, R. Straff, et al. Shear stress nucleation in microcellular foaming process. Polym. Eng. Sci. 42(2002): 1151-1158.

DOI: 10.1002/pen.11019

Google Scholar

[4] Fujimoto, S. S. Ray, M. Okamoto, et al. Well-controlled biodegradable nanocomposite foams: from microcellular to nanocellular. Macromol. Rapid. Comm. 24(2003)457-461.

DOI: 10.1002/marc.200390068

Google Scholar

[5] B. Zhu, W. Zha, J. Yang, et al. Layered-silicate based polystyrene nanocomposite microcellular foam using supercritical carbon dioxide as blowing agent. Polymer. 51(2010)2177-2184.

DOI: 10.1016/j.polymer.2010.03.026

Google Scholar

[6] C.-Y. Gao, N.-Q. Zhou, X.-F. Peng, L. Kong, P. Zhang. Effect of oscillatory shear on polystyrene cell morphology. J. Cell. Plast. 42(2006)191-206.

DOI: 10.1177/0021955x06060953

Google Scholar

[7] C.-Y. Gao, N.-Q. Zhou, X.-F. Peng, P. Zhang. Optimized polystyrene cell morphology by orthogonal superposition of oscillatory shear. Polym-Plast. Technol. 45(2006)1025 - 1029.

DOI: 10.1080/03602550600728554

Google Scholar

[8] D. F. Baldwin, C. B. Park, N. P. Suh. Microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. Part I: Microcell nucleation. Polym. Eng. Sci. 36(1996)1437-1445.

DOI: 10.1002/pen.10538

Google Scholar

[9] L. M. Matuana, C. B. Park, J. J. Balatinecz. Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites. Polym. Eng. Sci. 37 (1997)1137-1147.

DOI: 10.1002/pen.11758

Google Scholar