Optimization of the Incident IR Heat Flux upon a 3D Geometry Composite Part (Carbon/Epoxy)

Article Preview

Abstract:

The main purpose of this study is to cure a 3D geometry composite part (carbon fiber reinforced epoxy matrix) using an infrared oven. The work consists of two parts. In the first part, a FE thermal model was developed, for the prediction of the infrared incident heat flux on the top surface of the composite during the curing process. This model was validated using a reference solution based on ray tracing algorithms developed in Matlab®. Through the FE thermal model, an optimization study on the percentage power of each infrared heater is performed in order to optimize the incident IR heat flux uniformity on the composite. This optimization is performed using the Matlab® optimization algorithms based on Sequential Quadratic Programming and dynamically linked with the FE software COMSOL Multiphysics®. In a second part, the optimized parameters set is used in a model developed for the thermo-kinetic simulations of the composite IR curing process and the predictions of the degree of cure and temperature distribution in the composite part during the curing process.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 504-506)

Pages:

1085-1090

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Nakouzi, J. Pancrace, F. Schmidt, Y. Le MAoult, F. Berthet. «Curing Simulation of Composites Coupled with Infrared heating.» International Journal of Material Forming, 2010: 587-590.

DOI: 10.1007/s12289-010-0838-5

Google Scholar

[2] S. Nakouzi, J. Pancrace, F. Schmidt, Y. Le MAoult, F. Berthet. "Simulations of an Infrared Composite Curing process." Advanced Engineering Materials, 2011: 604-608.

DOI: 10.1002/adem.201000344

Google Scholar

[3] D. Lecointe. Caractérisation et simulation des processus de transferts lors d'injection de résine pour le procédé RTM. Thèse de Doctorat: Ecole doctorale science pour l'ingénieur de Nantes, 1999.

Google Scholar

[4] J.-L. Bailleul, D. Delaunay, Y. Jarny, T. Jurkowski. «Thermal Conductivity of Unidirectional Reinforced Composite Materials—Experimental Measurement as a Function of State of Cure.» Journal of Reinforced Plastics and Composites, 2001: 20-52.

DOI: 10.1106/ue8k-1rva-we2b-8v9d

Google Scholar

[5] R. Siegel J.R. Howell . Thermal Radiation Heat Transfer. Washington DC: Hemisphere Publishing.

Google Scholar

[6] B. Cosson, F. Schmidt, Y. Le Maoult, M. Bordival. «Infrared heating stage simulation of semi-transparent media (PET) using ray tracing method.» International Journal of Material Forming, 2010.

DOI: 10.1007/s12289-010-0985-8

Google Scholar

[7] B-C. Chern, T.J. Moon, J.R Howell. «On-Line Processing of Unidirectional Fiber Composites Using Radiative Heating: I. Model.» Journal of Composite Materials, 2002: 1905.

DOI: 10.1177/0021998302036016236

Google Scholar

[8] B-C. Chern, T.J. Moon, J.R Howell. «On-line Processing of Unidirectional Fiber Composites Using Radiative Heating: II. Radiative Properties, Experimental Validation and Process Parameter Selection.» Journal of Composite Materials, 2002: 1935.

DOI: 10.1177/0021998302036016240

Google Scholar

[9] COMSOL Multiphysics. «Heat Transfer Module User's Guide.»

Google Scholar