Modelling of Strain Hardening Behaviour of Sheet Metals for Stochastic Simulations

Article Preview

Abstract:

In current forming simulations, Ghosh or Hockett-Sherby extrapolation functions are used to model strain hardening effects of sheet metals. When it comes to stochastic simulations, the respective parameters have to be recalculated according to the scattering of the mechanical material properties like yield or tensile strength. As present stochastic samplings for deep drawing simulations only consider yield strength and tensile strength, it is non-trivial securing the extrapolated area of strain hardening curves due to lack of data beyond uniform strain. It is current practice to improve the description of the flow curve beyond uniform elongation point by using the maximum force criterion, which takes into account the gradient of the yield curve at the last known point. The corresponding system of equations has to be solved numerically. We propose a method for adjusting parameters of the Ghosh or Hockett-Sherby extrapolation functions, which overcomes the need of numerical calculations and keeps flow curve information from the extrapolated interval, even if the stochastic sampling doesn’t incorporate any data regarding that area.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 504-506)

Pages:

41-46

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Roll, F. Quetting, Capabilities and limitations of the virtual methods in the modelling of process sensitivities, Proceedings of the 4th FTF 2011, ETH Zurich, 2011.

Google Scholar

[2] A. Hensel, T. Spittel, Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren, Deutscher Verlag für Grundstoffindustrie, 1978.

Google Scholar

[3] P. Hora, Modellierung des Kaltverfestigungsverhaltens bei metallischen Werkstoffen, Proceedings of the MEFORM conference, TU Bergakademie Feiberg, 2011.

Google Scholar

[4] M. Schmidtchen, M. Spittel, Fließkurven für die Kalt- und Warmumformung, Proceedings of the MEFORM conference, TU Bergakademie Feiberg, 2011.

Google Scholar

[5] K. Grossenbacher, Virtuelle Planung der Prozessrobustheit in der Blechumformung, VDI-Verlag, VDI Rh. 2, Nr. 667, 2008.

Google Scholar

[6] J. E. Hockett, O. D. Sherby, Large strain deformation of polycrystalline metals at low homogenous temperatures, Journal of Mechanics and Physics of Solids, 23 (1975), 87-98.

DOI: 10.1016/0022-5096(75)90018-6

Google Scholar

[7] C. Annen, P. Pillatsch, P. Hora, Metamodelling based Planning and Control of Sheet Metal Forming Processes, Proceedings of the International Deep-Drawing Research Group (IDDRG) Conference 2011, Bilbao, 2011.

Google Scholar

[8] P. Hora, J. Heingärtner, N. Manupulo, L. Tong, Applicability of cognitive systems, metamodels and virtual tools for an in-line process robustness control, Tools and Technologies for processing Ultra High Strength Materials 2011, Graz, 2011.

Google Scholar

[9] P. Hora, B. Hocholdinger, A. Mutrux, L. Tong, Modelling of anisotropic hardening behaviour based on Barlat 2000 yield locus description, Proceedings of the FTF 2009 conference, ETH Zurich, 2009.

Google Scholar

[10] P. Hora, J. Heingärtner, N. Manupulo, L. Tong, D. Hortig, A. Neumann, K. Roll, On the way from an ideal virtual process to the modelling of the real stochastic, Proceedings of the 4th FTF 2011, ETH Zurich, 2011.

Google Scholar

[11] P. Hora, Umformtechnik 1, Grundlagen umformtechnischer Verfahren, lecture notes, Institute for virtual manufacturing, ETH Zurich, 2010, 14.

Google Scholar