The Properties of Steel Slag Bricks Prepared by both Alkali Activation and Accelerated Carbonation

Article Preview

Abstract:

The physical and chemical evolutions, including strength, porosity, chemical and mineral compositions, of properties of steel slag bricks prepared by both alkali activation and accelerated carbonation were investigated. The results show that alkali activation provides the initial properties, while accelerated carbonation plays a dominant role in such final performances as strength, porosity, chemical and mineral compositions of steel slag bricks. The steel slag bricks with a compressive strength of 33.8MPa, carbonation degree of 8.92% and porosity of 23.25% were successfully prepared after accelerated carbonation curing (T=50°C, RH=60%, P=0.25MPa, ρCO2=80% by volume) for 120min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.F. Bertos, S.J.R. Simons, C.D. Hills, et al, A Review of Accelerated Carbonation Technology in the Treatment of Cement-based Materials and Sequestration of CO2, J. J Hazard Mater. B112 (2004) 193-205.

DOI: 10.1016/j.jhazmat.2004.04.019

Google Scholar

[2] D.N. Huntzinger, J.S. Gierke, L.L. Sutter, et al, Mineral Carbonation for Carbon Sequestration in Cement Kiln Dust from Waste Piles, J. J Hazard Mater. 168 (2009) 31-37.

DOI: 10.1016/j.jhazmat.2009.01.122

Google Scholar

[3] J.C. Picot, D. Cassard, F. Maldan, et al, Worldwide Potential for Ex-situ Mineral Carbonation, J. Energy Procedia. 4 (2011) 2971-2977.

DOI: 10.1016/j.egypro.2011.02.206

Google Scholar

[4] B. Bonfils, F. Bourgeois, C. Julcour, et al, Understanding the Chemistry of Direct Aqueous Carbonation with Additives through Geochemical Modeling, J. Energy Procedia. 4 (2011) 3809-3816.

DOI: 10.1016/j.egypro.2011.02.316

Google Scholar

[5] C.J. Shi, P.V. Krivenko, D. Roy, Alkali-activated cements and concretes, Taylor & Francis, New York, 2006, pp.44-51.

DOI: 10.4324/9780203390672

Google Scholar

[6] C. Kunzler, N. Alves, E. Pereira, et al, CO2 Storage with Indirect Carbonation Using Industrial Waste, J. Energy Procedia. 4 (2011) 1010-1017.

DOI: 10.1016/j.egypro.2011.01.149

Google Scholar

[7] A. Van Zomeren, S.R. Van der Laan, H.B.A. Kobesen, et al, Changes in Mineralogical and Leaching Properties of Converter Steel Slag Resulting from Accelerated Carbonation at Low CO2 Pressure, J. Waste Manage. 31 (2011) 2236-2244.

DOI: 10.1016/j.wasman.2011.05.022

Google Scholar

[8] R. Baciocchi, G. Costa, A. Polettini, et al, Influence of Particle Size on the Carbonation of Stainless Steel Slag for CO2 Storage, J. Energy Procedia. 4 (2011) 4985-4992.

DOI: 10.1016/j.egypro.2009.02.314

Google Scholar

[9] R. Baciocchi, G. Costa, E.D. Bartolomeo, et al, Carbonation of Stainless Steel Slag as a Process for CO2 Storage and Slag Valorization, J. Waste Biomass Valor. 1 (2010) 467-477.

DOI: 10.1007/s12649-010-9047-1

Google Scholar

[10] N.R. Yang, W.H. Yue. The Handbook of Inorganic Matalloid Materials Atlas, Wuhan University of Technology Press, Wuhan, 2000, pp.201-406.

Google Scholar

[11] CH.F. Chang, J.W. Chen, The Experimental Investigation of Concrete Carbonation Depth, J. Cement Concrete Res. 36 (2006) 1760-1767.

DOI: 10.1016/j.cemconres.2004.07.025

Google Scholar

[12] E.E. Chang, CH.H Chen, Y.H. Chen, et al, Performance Evaluation for Carbonation of Steel-making Slags in a Slurry Reactor, J. J Hazard Mater. 186 (2011) 558-564.

DOI: 10.1016/j.jhazmat.2010.11.038

Google Scholar

[13] T. Van Gerven, G. Cornelis, E. Vandoren, et al, Effects of Carbonation and Leaching on Porosity in Cement-bound Waste, J. Waste Manage. 27 (2007) 977-985.

DOI: 10.1016/j.wasman.2006.05.008

Google Scholar

[14] P. Pipilikaki, M. Beazi-Katsioti, The Assessment of Porosity and Pore Size Distribution of Limestone Portland Cement Pastes, J. Constr Build Mater. 23 (2009) 1966-1970.

DOI: 10.1016/j.conbuildmat.2008.08.028

Google Scholar