Preparation and Characterization of Superionic Conductive Li2O-Al2O3-La2O3-TiO2-P2O5 Glass-Ceramics

Article Preview

Abstract:

Li2O-Al2O3(La2O3)-TiO2-P2O5 glass-ceramics were fabricated through heat-treatment of the original glass. The differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical workstation were employed to study the structural, morphology and electrical properties of the samples heat-treated at different temperatures. The results showed that: the glass-ceramics consist of the dominating LiTi2(PO4)3 phases, trifle AlPO4, TiO2 and unknown phases. With the heat-treatment temperature increasing from 700 °C to 1100 °C, the structure of glass-ceramic become denser and grain grew, lithium ion conductivity increased quickly and subsequent cut down gradually. While the specimen was obtained by crystallization at 900 °C for 12 h, the total conductivity of glass-ceramic material come up to the maximum (5.85 ×10-4 S•cm-1) at 25 °C. This inorganic solid electrolyte has a potential application in lithium batteries or other devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

314-320

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.B. Koeneman, I.J. BuschVishniac, K.L. Wood, Feasibility of micro power supplies for MEMS, J. Microelectromech. Syst. 6 (1997) 355-362.

DOI: 10.1109/84.650133

Google Scholar

[2] J.N. Harb, R.M. LaFollette, R.H. Selfridge, L.L. Howelld, Microbatteries for self-sustained hybrid micropower supplies, J. Power Sources 104 (2002) 46-51.

DOI: 10.1016/s0378-7753(01)00904-1

Google Scholar

[3] F. Albano, M.D. Chung, D. Blaauw, D.M. Sylvester, K.D. Wise, A.M. Sastry, Design of a Power Supply for an Intraocular Sensor, J. Power Sources 170 (2007) 216-224.

DOI: 10.1016/j.jpowsour.2007.04.007

Google Scholar

[4] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics 180 (2009) 911-916.

DOI: 10.1016/j.ssi.2009.03.022

Google Scholar

[5] H.P. Chen, H.Z. Tao, X.J. Zhao, Q.D. Wu, Fabrication and Ionic Conductivity of Amorphous Li-Al-Ti-P-O Thin Film, Journal of Non-Crystalline Solids 357 (2011) 3267-3271.

DOI: 10.1016/j.jnoncrysol.2011.05.023

Google Scholar

[6] Y.L. Xiong, H.Z. Tao, J. Zhao, H. Cheng, X.J. Zhao, Effects of Annealing Temperature on Structure and Opt-electric Properties of Ion-conducting LLTO Thin Films Prepared by RF Magnetron Sputtering, Journal of Alloys and Compounds 509 (2010).

DOI: 10.1016/j.jallcom.2010.10.086

Google Scholar

[7] J.L. Narváez-Semanate, A.C.M. Rodrigues, Microstructure and ionic conductivity of Li1+xAlxTi2-x(PO4)3 NASICON glass-ceramics, Solid State Ionics 181 (2010) 1197-1204.

DOI: 10.1016/j.ssi.2010.05.010

Google Scholar

[8] P. Johnson, N. Sammes, N. Imanishi, Y. Takeda, O. Yamamoto, Effect of microstructure on the conductivity of a NASICON-type lithium ion conductor, Solid State Ionics 192 (2010) 326-329.

DOI: 10.1016/j.ssi.2010.01.005

Google Scholar

[9] Z.Y. Wen, X.X. Xu, J.X. Li, Preparation, microstructure and electrical properties of Li1. 4Al0. 4Ti1. 6(PO4)3 nanoceramics, J. Electroceram. 22 (2009) 342-345.

DOI: 10.1007/s10832-008-9420-7

Google Scholar

[10] G. Adachi, N. Imanaka, H. Aono, Fast Li+ Conducting Ceramic Electrolytes, Adv. Mater. 8 (1996) 127-135.

DOI: 10.1002/adma.19960080205

Google Scholar

[11] L.O. Hagman, P. Kierkegaard, The Crystal Structure of NaM2(PO4)3; M=Ge, Ti, Zr, Acta Chem. Scand. 22 (1968) 1822-1832.

DOI: 10.3891/acta.chem.scand.22-1822

Google Scholar

[12] K. Takada, K. Fujimoto, T. Inada, A. Kajiyama, M. Kouguchi, S. Kondo, M. Watanabe, Sol-gel preparation of Li+ ion conductive thin film, Appl. Surf. Sci. 189 (2002) 300-306.

DOI: 10.1016/s0169-4332(01)01007-8

Google Scholar

[13] K. Takada, R. Ma, M. Osada, N. Ohta, L. Zhang, T. Sasaki, Formation of nano-sized particles of a solid electrolyte by laser ablation, Journal of Power Sources 146 (2005) 703-706.

DOI: 10.1016/j.jpowsour.2005.03.061

Google Scholar

[14] J. Fu, Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5, Solid State Ionics 96 (1997) 195-200.

DOI: 10.1016/s0167-2738(97)00018-0

Google Scholar

[15] X.X. Xu, Z.Y. Wen, Glass and Glass-ceramics Solid Electrolytes for Lithium-ion Battery, Journal of Inorganic Materials 20 (2005) 21-26.

Google Scholar

[16] J.S. Thokchom, B. Kumar, Microstructural effects on the superionic conductivity of a lithiated glass-ceramic, Solid State Ionics 177 (2006) 727-732.

DOI: 10.1016/j.ssi.2006.01.027

Google Scholar

[17] K. Funke, R.D. Banhatti, S. Brückner, C. Cramer, C. Krieger, A. Mandanici, C. Martini, I. Ross, Ionic motion in materials with disordered structures: conductivity spectra and the concept of mismatch and relaxation, Phys. Chem. Chem. Phys. 4 (2002).

DOI: 10.1039/b200122p

Google Scholar

[18] K. Funke, Jump relaxation in solid electrolytes, Prog. Solid St. Chem. 22 (1993) 111-195.

Google Scholar

[19] B. Kumar, S. Nellutla, J.S. Thokchom, C. Chen, Ionic conduction through heterogen blocking and space charge effects, J. Power Sources 160 (2006) 1329-1335.

DOI: 10.1016/j.jpowsour.2006.02.062

Google Scholar