Electrical, Dielectrical and Magnetic Properties of Zr-Mn Doped Nano-Ferrites

Article Preview

Abstract:

We measured the dc electrical resistivity as a function of temperature and dielectric parameters in the frequency range 100 Hz to 3 MHz of nanosized Zr-Mn spinel ferrites with nominal composition CoFe2-2xZrxMnxO4 (0.1 x 0.4). The dc electrical resistivity decreased with the rise in temperature for all the samples, showing a semiconductor like behavior. From the dc electrical resistivity the activation energy and drift mobility are determined. Both the drift mobility and activation energy increase with a rise in x. The dielectric constant, dielectric (losses) and ac electrical resistivity as a function of frequency are also reported. The low field ac magnetic susceptibility measurement showed that the ferrimagentic transition temperature is in the range of 4395 K to 6585 K.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

301-306

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Hassan, F. M. Yen, M. Hashim, Z. Abbas, Z. A. Wahab, W. M. Daud, W. Yusoff, A. Zakaria, Ionics (2007) 13: 219–222, DOI 10. 1007/s11581-007-0094-y.

DOI: 10.1007/s11581-007-0094-y

Google Scholar

[2] L. Li, H. Lan, Z. Yu, K. Sun, Z. Xu, H. Ji, IEEE TRANSACTIONS ON MAGNETICS, vol. 44, No. 9, September (2008).

Google Scholar

[3] B. P. Rao, K. H. Rao, K. Trinadh, O. F. Caltun, J. Optoelect and Advance Mats, 3 (2004), 951-954.

Google Scholar

[4] A. Maqsood, K. Khan, M. A. Rehman, M. A. Malik, J Supercond Nov Magn (2011) 24: 617–622.

Google Scholar

[5] P. P. Sarangi, S.R. Vadera, M. K. Patra, N. N. Ghosh, Powder Technology 203 (2010) 348–353.

Google Scholar

[6] A.M. El-Sayed, Mater Chem. Phys. 82 (2003) 583.

Google Scholar

[7] I.H. Gul, F. Amin, M. Anis-ur-Rehman, A. Maqsood, Scr. Mater. 56 (2007) 497.

Google Scholar

[8] I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, J. Magn. Magn. Mater. 311 (2007) 494.

Google Scholar

[9] M. J. Iqbal, Mah R. Siddiquah, J. Magn. Mag. Mats 320 (2008) 845–850.

Google Scholar

[10] R.G. Kharabe, R.S. Devan and B.K. Chougale, J. Alloys Compd, 463 (2008) 67-72.

Google Scholar

[11] D. Ravinder, G.R. Kumar, Y.C. Venudhar, J. Alloys. Compd. 363 (2004) 6.

Google Scholar

[12] Maxwell JC, Electricity and Magnetism 1 (1929), Oxford University Press, Oxford.

Google Scholar

[13] Wagner KW, Ann. Phys 40 (1913) 817.

Google Scholar

[14] Koops CG, Phys. Rev. 83 (1951) 121.

Google Scholar

[15] Abo El Ata AM, Attia SM, Meaz TM, Solid State Sci. 6 (2004) 61.

Google Scholar

[16] Iwauchi K, J. Appl. Phys 10 (1971) 1520.

Google Scholar

[17] Verwey EJW, Heilman, J. Chem. Phys, EL 15 (1947) 174.

Google Scholar

[18] M. Naeem, N. A. Shah, I. H. Gul and A. Maqsood, J. Alloy and Comp, 487-739 (2009).

Google Scholar

[19] M. J. Iqbal, Barakat-ul-Ain, Matr. Sc and Engg B, 164 (2009) 6-11.

Google Scholar

[20] Y. Bai, J. Zhou, Z. Gui, L. Li, J. Magn. Magn. Mater, 250 (2002) 364-369.

Google Scholar