Trapping of Nano-Particles Using a Near-Field Optical Fiber Probe

Article Preview

Abstract:

By employing a generalization of the conservation law for momentum using the finite difference time domain (FDTD) method, the feasibility of using a near-field optical fibre probe to create near-field optical trapping is investigated. Numerical results indicate that the scheme is able to trap nanoparticles with diameters of tens of nanometres in a circular shape with lower laser intensity. Using the built system with a tapered metal-coated fibre probe, 120 nm polystyrene particles are trapped in a multi-circular shape with a minimum size of 400 nm. They are at a resolution of λ/7 (λ: laser wavelength) and d (d: tip diameter of fiber probe), respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-95

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.H. Liu, L.J. Yang, Y. Wang, Optical trapping force combining an optical fiber probe and an AFM metallic probe, Opt. Exp. 19 (2011) 3703-3714.

DOI: 10.1364/oe.19.003703

Google Scholar

[2] E.S. Kwak, T.D. Onuta, D. Amarie, et al, Optical trapping with integrated near-field apertures, Phy. Chem. B 108 (2004) 13607-13612.

DOI: 10.1021/jp048028a

Google Scholar

[3] A. Bouhelier, J. Renger, M.R. Beversluis, et al, Plasmon-coupled tip-enhanced near-field optical microscopy, J. Microscopy 210 (2003) 220-224.

DOI: 10.1046/j.1365-2818.2003.01108.x

Google Scholar

[4] K.Y. Wang, Z. Jin, W.H. Huang, The possibility of trapping and manipulating a nanometer scale particle by the SNOM tip, Opt. Comm. 149 (1998) 38-42.

DOI: 10.1016/s0030-4018(97)00706-2

Google Scholar

[5] B.H. Liu, L.J. Yang, Y. Wang, Simulation of near-field optical manipulator using the combination of a NSOM probe and an AFM metallic probe, J. Appl. Phys. 109 (2011) 104317-1-104317-6.

DOI: 10.1063/1.3592217

Google Scholar

[6] F.R. Cunha, H.L.G. Couto, On the influence of the hydrodynamic interactions on the aggregation rate of magnetic spheres in a dilute suspension, J. Magn. Magn. Mater. 323 (2011) 77-82.

DOI: 10.1016/j.jmmm.2010.08.033

Google Scholar

[7] B.H. Liu, L.J. Yang, Y. Wang, J.L. Yuan, Nano-manipulation performance with enhanced evanescent field close to near-field optical probes, Opt. Commun. 284 (2011) 3039-3046.

DOI: 10.1016/j.optcom.2011.02.023

Google Scholar

[8] M.H. Korayem, A. Kavousi, N. Ebrahimi, Dynamic analysis of tapping-mode AFM considering capillary force interactions, Sci. Iran. 18 (2011) 80-90.

DOI: 10.1016/j.scient.2011.03.014

Google Scholar

[9] B.H. Liu, L.J. Yang, Y. Wang, J.L. Cui, Particles nanomanipulation by the enhanced evanescent field through a near-field scanning optical microscopy probe, Sensor. Actuat. A-Phys. 169 (2011) 171-177.

DOI: 10.1016/j.sna.2011.04.042

Google Scholar

[10] Y.M. Li, New life science and technology-the principle, technology and application of optical tweezers, University of Science and Technology of China, Hefei, (1996).

Google Scholar

[11] P. Pmoar, F. Ladouceur, L. Cahill, Numerical analysis of the transmission efficiency of heat-down and chemically etched scanning near-field optical microscope, App. Opt. 39 (2000) 1966-(1972).

DOI: 10.1364/ao.39.001966

Google Scholar