Effects of Na+ on Spectral Properties of Er3+: CaF2 Transparent Ceramic

Article Preview

Abstract:

Er3+, Na+-co-doped CaF2 transparent ceramics with Er3+ dopant concentration of 5at% and Na+ of 0, 0.5, 1.0 and 1.5at% were fabricated by the vacuum hot pressing method. Absorption spectra, emission spectra and fluorescence lifetimes were measured at room temperature to study the effects of Na+ on the spectral properties of Er3+: CaF2 transparent ceramic. The results showed that after introducing Na ion into Er3+: CaF2 transparent ceramics, charge-neutralized Er3+-Na+ structure formed which prevented Er3+ from clustering, the absorption intensity of ceramics decreased with the increase of Na+ concentration, but the spectroscopy and photoluminescence properties of Er3+ in CaF2 transparent ceramic could be modulated by adjusting the concentration of Na+. Co-doping Na+ to increase fluorescence lifetime should have an optimal value.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Pages:

307-311

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Choi, F. G. Shi, A. Margaryan, and W. van der Veer: J. Alloy. Compd, Vol. 450 (2008) No.1-2, p.540.

Google Scholar

[2] H. Lin, S. Jiang, J. Wu, F. Song, N. Peyghambarian, and E. Pun: J. Phys. D, Appl. Phys, Vol. 36 (2003) No.7, p.812.

Google Scholar

[3] M. Nishi, S. Tanabe, M. Inoue, M. Takahashi, K. Fujita, and K. Hirao: Opt. Mater, Vol. 27 (2005) No.7, p.655.

Google Scholar

[4] R. Kapoor, C. S. Friend, A. Biswas, and P. N. Prasad: Opt. Lett, Vol. 25 (2000) No.5, p.338.

Google Scholar

[5] R. Balakrishnaiah, D. W. Kim, S. S. Yi, S. H. Kim, K. Jang, H. S. Lee, and J. H. Jeong: Thin Solid Films, Vol. 518 (2010) No.22, p.6145.

DOI: 10.1016/j.tsf.2010.04.062

Google Scholar

[6] K. D. Belfield and K. J. Schafer: Chem. Mater, Vol. 14 (2002) No.9, p.3656.

Google Scholar

[7] J. L. D. C. Labbe, J.L. Doualan, P.Camy, R.Moncorge, and M.Thuau: Opt.Commun, Vol. 209 (2002) No.1-3, p.193.

Google Scholar

[8] J. Zhou, W.X. Zhang, J. Li, B.X. Jiang, W.B. Liu, and Y.B. Pan: Ceram. Int, Vol. 36 (2010) No.1, p.193.

Google Scholar

[9] S.L. Zhao, X.L. Wang, S.Q. Xua, and L.L. Huc: Chalcogenide Letters, Vol. 2 (2005) No.10, p.99.

Google Scholar

[10] A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad: J. Phys. Chem, Vol. 106 (2002) No.8, p.1909.

Google Scholar

[11] P. Aubry, A. Bensalah, P. Gredin, G. Patriarche, D. Vivien, and M. Mortier: Opt. Mater, Vol. 31 (2009) No.5, p.750.

DOI: 10.1016/j.optmat.2008.03.022

Google Scholar

[12] L.B Su, J. Xu, H.J. Li, L. Wen, W.Q Yang, Z.W Zhao, J.L. Si, Y.J. Dong, and G.Q Zhou: J. Cryst. Growth, Vol. 277 (2009) No.1-4, p.264.

Google Scholar

[13] G.L. Zhi, J.H. Song, B.C. Mei, and W.B. Zhou: J. Alloy. Compd, Vol. 509 (2011) No.37, p.9133.

Google Scholar

[14] D.Y. Shen, J.K. Sahu, and W. Clarkson: Opt. Lett, Vol. 31 (2006) No.6, p.754.

Google Scholar

[15] N. Ter-Gabrielyan, L. Merkle, E. Kupp, G. Messing, and M. Dubinskii: Opt. Lett, Vol. 35 (2010) No.7, p.922.

DOI: 10.1364/ol.35.000922

Google Scholar

[16] L.B. Su, J. Xu, H.J. Li, W.Q. Yang, Z.W. Zhao, J.L. Si, Y.J. Dong, and G.Q. Zhou: Opt. Opt. Lett, Vol. 30 (2005) No.9, p.1003.

Google Scholar